
Getting started with Perl
• Rather than looking at syntax, we'll study some
"programming idioms" and see how to implement them in
Perl

• An "idiom" is a "characteristic mode of expression", or a
way of doing something ...

• Perl Idiom #1 - Processing Text Files

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Our First Perl Script

#!/usr/bin/perl

while (<>)
{
print;

}

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

A Variation on our First Perl Script

#!/usr/bin/perl

while (<>)
{
Note how the next line includes an
optional clause placing a condition

 # on the print command.

print if /barryp/;
}

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Regular Expressions - The Heart of Perl
• Regular Expressions are used as the basis of patterns in Perl

• Using a special notation, we state the pattern of text that we
are interested in finding within our data, a process referred
to as "pattern matching"

• Perl has four regular expression operators:

• alternation, a choice, written as an in-fix |

• concatenation, a collection, written as a series of
characters

• repetition, written as a post-fix *

• option, written as a post-fix ?

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Alternation: Making Choices
P|J|B

• We use the | symbol to indicate that we wish to match either
the letter "P", "J", or "B"

• If we wanted either the pattern "PJ" or "B", we would write:

PJ|B

• "PJ" or "PB" can be matched by using brackets to bind the
alternation:

P(J|B)

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Concatenation: Matching Characters
• We have already seen this a couple of times:

PJ
• is a concatenation, as is:

barryp

• Concatenation is simply any combination of characters from
a particular character set

• Concatenation binds more tightly than Alternation, so

Apple|Sun|Motorola

• is not the same as (and does not mean):

Appl(e|S)u(n|M)otorola

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Repetition: Repeating Patterns
• It is often useful to match a repeating pattern, and we can do
this in Perl using the * symbol:

x*

• matches an arbitrary number of x characters (zero or more)
• Note that * binds more tightly than alternation and
concatenation so:

PJB*

• is not the same as (and does not mean):

(PJB)*

• Here's an interesting pattern, modified from Chapman's
"Perl: The Programmer's Companion", page 13:

((Buy|Sell) (ten|twenty|fifty|a hundred) Eircom Shares!)*

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Option: Maybe, Maybe Not
• Like *, options in Perl regular expressions are post-fix, and
we use the ? character:

PJ?B

• will match PJB and PB

• The binding power of ? is equal to *, so it's greater than
alternation and concatenation, so:

PJB?

• is not the same (and does not mean):

(PJB)?

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Specifying Patterns
• When we take a regular expression and place it between two
slash characters, we have a pattern:

/barryp/

• matches any line in our input that has the sequence of
characters "barryp" in it

/bash/

• looks for the sequence "bash"

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

More (Powerful) Regular Expressions
• Perl provides various extensions to the notation seen so far:

A|E|I|O|U

• can be written as:

[AEIOU]

• This notation is refered to as a "character class"

• "Everything but" is represented ^ (i.e., inverse):

[^AEIOU]

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

More Character Classes
• "Ranges" are represented by -

[0-9]

• is the same as:

0|1|2|3|4|5|6|7|8|9

• We can combine character class and operators as follows:

[A-Za-z_][A-Za-z0-9_]*

• Note: in the previous example, [] binds just like () when
using character classes, so we match multiple characters
from the second character class (zero or more)

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Special Character Classes
• Perl shorthand for frequently used character classes
includes:

\d a digit, i.e., [0-9]

\s a "space" character, i.e., [
\n\r\t\f]

\w a word character, i.e., [A-Za-z0-9_]

\D is the inverse of \d

\S is the inverse of \s

\W is the inverse of \w

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Shorthand Examples
• We could have written:

[A-Za-z_]\w*

• instead of:

[A-Za-z_][A-Za-z0-9_]*

• In Perl, There’s More Than One Way To Do It ... so, pick
one that works for you!

[\d,]

• refers to any digit or a comma

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Dot
• The full-stop (or period or dot) character has significiant
meaning

• It represents all characters (except newline)

.*

• means any combination of characters which does not
include newline

• Note: the "*" means "zero or more"

• Note: within [], the "." loses its special meaning, so:

[\w.]

• refers to any word character or a dot (full-stop/period)

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

More Shorthand (Examples)
\w\w*

• refers to one or more word characters, which is ok, but looks
a little strange

• Again, in Perl, There's More Than One Way To Do It, so:

\w+

• is equivalent, and reads "at least one or more" word
characters

• If we wanted to look for exactly 6 word characters we could
write:

\w\w\w\w\w\w
• but we'd rather use:

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

\w{6}

Even More Shorthand (Examples)
• The following might be useful at GAA All-Ireland Finals:

((Hip!){2}Hooray!){3}

• What do you think the following means?

[1-9]\d{2,4}

• Any number that matches from 100 - 99999

• If the second number is missing, it is taken to be infinity, so
we have:

[1-9]\d{2,}

• which is 100 to a really big number!

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Perl Metacharacters
• We hit a problem when we want to include a metacharacter
in a pattern match

• The metacharacters we've seen so far include: [,],*,?,{,},
etc., etc.

/What is you name?/

• may not give us what we want, whereas:

/What is your name\?/

• will work as we expect it to

• This process is refered to as "escaping" the character

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Escaping Characters
• Inside [], only ^, -, and] need to be escaped, as they have
special meaning

• We need to be very careful with the "/" character - for
example, we may try this while processing the /etc/passwd
file on Linux:

print if /bin/bash/;

• which will screw-up - we should have used:

print if /bin\/bash/;

• For short examples, this is ok, but what if we were matching
the following:

http://elmo.itcarlow.ie/booklist.html

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

The Match Operator
• We could write something like the following:

print if /http:\/\/elmo\.itcarlow\.ie\/booklist\.html/;

• which will work, but looks disgusting!

• Again, with Perl, There's More Than One Way To Do It,
and by pre-fixing the pattern we wish to match with a "m"
(the match operator) we can adjust the delimiting character,
which is a "/" by default:

print if m!http://elmo\.itcarlow\.ie/booklist\.html!;

• or we could use any bracket pairing, for example:
print if m{http://elmo\.itcarlow\.ie/booklist\.html};

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Shorthand For Certain Character
Escapes

\t tab
\n newline (system-dependent)
\r carriage return
\f formfeed
\b backspace (special case)
\a alarm (bell)
\e escape
\cx control-x (x is any key)
\0xxx character code xxx in octal
\xyy character code yy in
hexidecimal

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Matching Discrete Words
/bash/

• matches lines with "bash", "bashing", "bashed", "non-bash",
etc., etc., which may or may not be what we want

/\bbash\b/

• matches just the word "bash", surrounded by an "empty
string"

• Note that \b is not the same as \s in this context

• Here's a even better way to write the pattern:

/\b[Bb]ash\b/

• which matches "bash" and "Bash"

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Matching At Start/End Of Lines
print if /^barryp/;

• will match if "barryp" is at the start of the line

print if /bash$/;

• will match if "bash" is at the end of the line

• As we learn more about Linux/UNIX, you will see that ^
and $ are used in this context elsewhere (for an example,
review your vi Quick Reference)

• What about this pattern?

print if /^barryp.*bash$/;

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

If or Unless
• Using "if", we can indicate that we want to include a match,
as we have already seen:

print if /^barryp.*bash$/;

• Using "unless" we can indicate that we want to include
everything but the match:

print unless /^barryp.*bash$/;

• This use of unless can sometimes prove very handy indeed

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Substitutions and Translations
• It’s nice to be able to search text files for patterns

• It would be nicer if we could do something to the matched
patterns once found

• Perl provides such a facility via Substitutions and
Translations

• Substituting text with s:

while (<>)
{
s/barryp/Paul Barry/;
print;

}

• replaces “barryp” when matched with “Paul Barry”

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Multiple Substitutions
• Simply place the substitutions on separate lines:

while (<>)
{
s/barryp/Paul Barry/;
s/kinsella/Austin Kinsella/;
s/varleyj/Joe Varley/;
print;

}
• Although this works, only the first occurrence of the
matched pattern on each line is substituted

• To indicate that all occurrences on the line should be
changed, use a post-fixed g:

s/barryp/Paul Barry/g

• The g stands for “global”

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Referring to Matched Patterns
• It is sometimes useful to refer to whatever was found within
the substituted string:

s/barryp/$& is the id for Paul
Barry/;

• will replace “barryp” with “barryp is the id for Paul Barry”

• $& is the match variable

• As this is Perl, There’s More Than One Way To Do It, so we
can replace the rather cryptic $& with $MATCH which can
be easier to read

• Note: to use $MATCH, your Perl script must state “use
English;” near the top of the source file

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

More Than One Match
• What do you think the following does?

s/(\w+) and (\w+)/$2 and $1/;
print;

• Two matched words separated by the word “and” are
reversed

• Here’s another variation:

s/(\w+) and \1/$1 twice/;
print;

• If the string “Barry and Barry” was matched, we would
substitute “Barry twice” instead

• So, $1, $2, $3, and so on, refer to matches found

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Translation
• Sometimes we want to translate characters instead of
substitute, so we have the tr operator

tr/a-z/A-Z/

• Will convert ever lowercase letter into the UPPERCASE
equivalent

• Here’s a very simple rot13 translator:

while (<>)
{

tr/A-Za-z/N-ZA-Mn-za-m/;
print;

}

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Translation Qualifiers
• If you append a “c” to the tr line, we complement the
translation, i.e., it is applied to any character not in the
string

tr/.;?!,: \t\n/x/c

• Replaces every character except those matched with the
letter x

• Squashing is also possible with the “s” qualifier:

tr/ \t/ /s;

• “squashes” runs of spaces and tabs into a single space
• Deletion is performed by the “d” qualifier:

tr/0-9/0-7/d;

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

• will remove any 8’s and 9’s from the input stream

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Filehandles
• So far, we have relied on Perl’s default behaviour to process
files:

while (<>)
{ # Do your processing here ... }

• In actual fact, we are using the STDIN filehandle, which is
automatically set up for us by the Perl environment

• Other standard filehandles exist: STDOUT, STDERR, and
DATA

• And, of course, we can declare our own filehandles:

open MYFILE, ‘data.txt’;
while (<MYFILE>)
{

print;
}

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

close MYFILE;

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

What’s This “DATA” Thing?

while (<DATA>)
{

print if /data/;
}
__END__
This is the data this program will use.
As we are using the DATA filehandle, Perl looks
to
the end of the script, represented by __END__,
and
starts reading data from there, i.e., after
__END__, as if it was an input file.
This can be really handy when testing a script.
We will use it a lot.

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

