
Getting started with Perl
• Rather than looking at syntax, we'll study some 
"programming idioms" and see how to implement them in 
Perl

• An "idiom" is a "characteristic mode of expression", or a 
way of doing something ...

• Perl Idiom #1 - Processing Text Files
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Our First Perl Script

#!/usr/bin/perl 

while ( <> )
{
print;

}
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A Variation on our First Perl Script

#!/usr/bin/perl 

while ( <> )
{
# Note how the next line includes an
# optional clause placing a condition 

 # on the print command.

print if /barryp/;
}
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Regular Expressions - The Heart of Perl
• Regular Expressions are used as the basis of patterns in Perl

• Using a special notation, we state the pattern of text that we 
are interested in finding within our data, a process referred 
to as "pattern matching"

• Perl has four regular expression operators:

• alternation, a choice, written as an in-fix |

• concatenation, a collection, written as a series of 
characters

• repetition, written as a post-fix *

• option, written as a post-fix ?
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Alternation: Making Choices
P|J|B

• We use the | symbol to indicate that we wish to match either 
the letter "P", "J", or "B"

• If we wanted either the pattern "PJ" or "B", we would write:

PJ|B

• "PJ" or "PB" can be matched by using brackets to bind the 
alternation:

P(J|B)
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Concatenation: Matching Characters
• We have already seen this a couple of times:

PJ
• is a concatenation, as is:

barryp

• Concatenation is simply any combination of characters from 
a particular character set

• Concatenation binds more tightly than Alternation, so

Apple|Sun|Motorola

• is not the same as (and does not mean):

Appl(e|S)u(n|M)otorola
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Repetition: Repeating Patterns
• It is often useful to match a repeating pattern, and we can do 
this in Perl using the * symbol:

x*

• matches an arbitrary number of x characters (zero or more)
• Note that * binds more tightly than alternation and 
concatenation so:

PJB*

• is not the same as (and does not mean):

(PJB)*

• Here's an interesting pattern, modified from Chapman's 
"Perl: The Programmer's Companion", page 13:

((Buy|Sell) (ten|twenty|fifty|a hundred) Eircom Shares!)*
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Option: Maybe, Maybe Not
• Like *, options in Perl regular expressions are post-fix, and 
we use the ? character:

PJ?B

• will match PJB and PB

• The binding power of ? is equal to *, so it's greater than 
alternation and concatenation, so:

PJB?

• is not the same (and does not mean):

(PJB)?
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Specifying Patterns
• When we take a regular expression and place it between two 
slash characters, we have a pattern:

/barryp/

• matches any line in our input that has the sequence of 
characters "barryp" in it

/bash/

• looks for the sequence "bash"
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More (Powerful) Regular Expressions
• Perl provides various extensions to the notation seen so far:

A|E|I|O|U

• can be written as:

[AEIOU]

• This notation is refered to as a "character class"

• "Everything but" is represented ^ (i.e., inverse):

[^AEIOU]
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More Character Classes
• "Ranges" are represented by -

[0-9]

• is the same as:

0|1|2|3|4|5|6|7|8|9

• We can combine character class and operators as follows:

[A-Za-z_][A-Za-z0-9_]*

• Note: in the previous example, [] binds just like () when 
using character classes, so we match multiple characters 
from the second character class (zero or more)
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Special Character Classes 
• Perl shorthand for frequently used character classes 
includes:

\d a digit, i.e., [0-9]

\s a "space" character, i.e., [ 
\n\r\t\f]

\w a word character, i.e., [A-Za-z0-9_]

\D is the inverse of \d

\S is the inverse of \s

\W is the inverse of \w
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Shorthand Examples
• We could have written:

[A-Za-z_]\w*

• instead of:

[A-Za-z_][A-Za-z0-9_]*

• In Perl, There’s More Than One Way To Do It ... so, pick 
one that works for you!

[\d,]

• refers to any digit or a comma

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland.  All Rights Reserved.



Dot
• The full-stop (or period or dot) character has significiant 
meaning

• It represents all characters (except newline)

.*

• means any combination of characters which does not 
include newline

• Note: the "*" means "zero or more"

• Note: within [], the "." loses its special meaning, so:

[\w.]

• refers to any word character or a dot (full-stop/period)
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More Shorthand (Examples)
\w\w*

• refers to one or more word characters, which is ok, but looks 
a little strange

• Again, in Perl, There's More Than One Way To Do It, so:

\w+

• is equivalent, and reads "at least one or more" word 
characters

• If we wanted to look for exactly 6 word characters we could 
write:

\w\w\w\w\w\w
• but we'd rather use:
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\w{6}

Even More Shorthand (Examples)
• The following might be useful at GAA All-Ireland Finals:

((Hip! ){2}Hooray!){3}

• What do you think the following means?

[1-9]\d{2,4}

• Any number that matches from 100 - 99999

• If the second number is missing, it is taken to be infinity, so 
we have:

[1-9]\d{2,}

• which is 100 to a really big number!
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Perl Metacharacters
• We hit a problem when we want to include a metacharacter 
in a pattern match

• The metacharacters we've seen so far include: [,],*,?,{,}, 
etc., etc.

/What is you name?/

• may not give us what we want, whereas:

/What is your name\?/

• will work as we expect it to

• This process is refered to as "escaping" the character
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Escaping Characters
• Inside [], only ^, -, and ] need to be escaped, as they have 
special meaning

• We need to be very careful with the "/" character - for 
example, we may try this while processing the /etc/passwd 
file on Linux:

print if /bin/bash/;

• which will screw-up - we should have used:

print if /bin\/bash/;

• For short examples, this is ok, but what if we were matching 
the following:

http://elmo.itcarlow.ie/booklist.html
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The Match Operator
• We could write something like the following:

print if /http:\/\/elmo\.itcarlow\.ie\/booklist\.html/;

• which will work, but looks disgusting!

• Again, with Perl, There's More Than One Way To Do It, 
and by pre-fixing the pattern we wish to match with a "m" 
(the match operator) we can adjust the delimiting character, 
which is a "/" by default:

print if m!http://elmo\.itcarlow\.ie/booklist\.html!;

• or we could use any bracket pairing, for example:
print if m{http://elmo\.itcarlow\.ie/booklist\.html};
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Shorthand For Certain Character 
Escapes

\t tab
\n newline (system-dependent)
\r carriage return
\f formfeed
\b backspace (special case)
\a alarm (bell)
\e escape
\cx control-x (x is any key)
\0xxx character code xxx in octal
\xyy character code yy in 
hexidecimal
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Matching Discrete Words
/bash/

• matches lines with "bash", "bashing", "bashed", "non-bash", 
etc., etc., which may or may not be what we want

/\bbash\b/

• matches just the word "bash", surrounded by an "empty 
string"

• Note that \b is not the same as \s in this context

• Here's a even better way to write the pattern:

/\b[Bb]ash\b/

• which matches "bash" and "Bash"
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Matching At Start/End Of Lines
print if /^barryp/;

• will match if "barryp" is at the start of the line

print if /bash$/;

• will match if "bash" is at the end of the line

• As we learn more about Linux/UNIX, you will see that ^ 
and $ are used in this context elsewhere (for an example, 
review your vi Quick Reference)

• What about this pattern?

print if /^barryp.*bash$/;
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If or Unless
• Using "if", we can indicate that we want to include a match, 
as we have already seen:

print if /^barryp.*bash$/;

• Using "unless" we can indicate that we want to include 
everything but the match:

print unless /^barryp.*bash$/;

• This use of unless can sometimes prove very handy indeed
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Substitutions and Translations
• It’s nice to be able to search text files for patterns

• It would be nicer if we could do something to the matched 
patterns once found

• Perl provides such a facility via Substitutions and 
Translations

• Substituting text with s:

while (<>)
{
s/barryp/Paul Barry/;
print;

}

• replaces “barryp” when matched with “Paul Barry”
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Multiple Substitutions
• Simply place the substitutions on separate lines:

while (<>)
{
s/barryp/Paul Barry/;
s/kinsella/Austin Kinsella/;
s/varleyj/Joe Varley/;
print;

}
• Although this works, only the first occurrence of the 
matched pattern on each line is substituted

• To indicate that all occurrences on the line should be 
changed, use a post-fixed g:

s/barryp/Paul Barry/g

• The g stands for “global”
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Referring to Matched Patterns
• It is sometimes useful to refer to whatever was found within 
the substituted string:

s/barryp/$& is the id for Paul 
Barry/;

• will replace “barryp” with “barryp is the id for Paul Barry”

• $& is the match variable

• As this is Perl, There’s More Than One Way To Do It, so we 
can replace the rather cryptic $& with $MATCH which can 
be easier to read

• Note: to use $MATCH, your Perl script must state “use 
English;” near the top of the source file
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More Than One Match
• What do you think the following does?

s/(\w+) and (\w+)/$2 and $1/;
print;

• Two matched words separated by the word “and” are 
reversed

• Here’s another variation:

s/(\w+) and \1/$1 twice/;
print;

• If the string “Barry and Barry” was matched, we would 
substitute “Barry twice” instead

• So, $1, $2, $3, and so on, refer to matches found
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Translation
• Sometimes we want to translate characters instead of 
substitute, so we have the tr operator

tr/a-z/A-Z/

• Will convert ever lowercase letter into the UPPERCASE 
equivalent

• Here’s a very simple rot13 translator:

while (<>)
{

tr/A-Za-z/N-ZA-Mn-za-m/;
print;

}
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Translation Qualifiers
• If you append a “c” to the tr line, we complement the 
translation, i.e., it is applied to any character not in the 
string

tr/.;?!,: \t\n/x/c

• Replaces every character except those matched with the 
letter x

• Squashing is also possible with the “s” qualifier:

tr/ \t/ /s;

• “squashes” runs of spaces and tabs into a single space
• Deletion is performed by the “d” qualifier:

tr/0-9/0-7/d;
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• will remove any 8’s and 9’s from the input stream
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Filehandles
• So far, we have relied on Perl’s default behaviour to process 
files:

while (<>)
{ # Do your processing here ...  }

• In actual fact, we are using the STDIN filehandle, which is 
automatically set up for us by the Perl environment

• Other standard filehandles exist: STDOUT, STDERR, and 
DATA

• And, of course, we can declare our own filehandles:

open MYFILE, ‘data.txt’;
while (<MYFILE>)
{

print;
}
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close MYFILE;
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What’s This “DATA” Thing?

while (<DATA>)
{

print if /data/;
}
__END__
This is the data this program will use.
As we are using the DATA filehandle, Perl looks 
to 
the end of the script, represented by __END__, 
and 
starts reading data from there, i.e., after 
__END__, as if it was an input file.
This can be really handy when testing a script.
We will use it a lot.
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