
Controlling Flow with Perl
• Perl has the usual if, while, and for control-flow

mechanisms that exist in C/C++/Java

• Unlike other languages, Perl requires the use of braces (i.e., {
and }), so:

if ($count > 20)
{

die 'Count has exceeded its limit!';

}

• is legal Perl, whereas:
if ($count > 20) die 'Count has exceeded its limit!';

• is not legal, resulting in the following error message from the
Perl interpreter:

syntax error at test.pl line 1, near ") die"
Execution of test.pl aborted due to compilation errors.

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

if Syntax
• We have already seen the simplest form of if (on the last

slide)

• As you would expect, we can also have an else part:

if (length($line) >= 80)
{

print "Line length is wider than the standard text-mode screen.\n";
}
else
{

print "Line length is okay - it'll fit.\n";
}

• The keyword elsif is used whenever we have a mutually
exclusive series of tests, and can be used to simulate a switch
statement, which is nice to know, because Perl does not have
a switch statement!

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

if, elsif, else Example
if ($a == 1)
{

print "The value of scalar a is: $a.\n";
}
elsif ($a == 2)
{

print "The value of scalar a is: $a.\n";
}
elsif ($a == 3)
{

print "The value of scalar a is: $a.\n";
}
else
{

print "The value of scalar a is something else.\n";
}

• Note that the keyword unless can be used anywhere an if
appears, and has the effect of negating the condition being
tested

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Doing if on One Line
• We have already seen what follows in C/C++/Java, and it

exists in Perl also

• The following if statement:

if (length($a) >= length($b))
{
$longer = $a;

}
else
{
$longer = $b;

}

• can be written more compactly as:

$longer = (length($a) >= length($b)) ? $a : $b;

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Looping in Perl
• Our very first Perl script introduced the while statement,

which keeps executing something while the condition being
tested is true

• Perl allows you to use until anywhere you use while, and
the effect is to keep executing something while the condition
being tested is false (i.e., until it is true)

• Like the if, the curly braces are required with loops

• You can, again, just like with if, use while and until as
qualifiers to a single statement in Perl:

#!/usr/bin/perl -w

print while (<>);

• is a shorter, but equally valid, version of our first Perl script
(now it's only 2 lines long!).

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Extra Looping Controls
• Perl provides some specific statements which can be used to

fine-tune the behaviour of loops:

•last: causes an immediate exit from the current loop

•next: causes the current iteration of the loop to be
abandoned, with control jumping back to the controlling
while or until statement (at the top of the loop)

•redo: causes the current iteration of the loop to be
abandoned, jumps to the start of the loop, and starts re-
executing the code without testing the loop condition

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

More Looping Controls
•continue: identifies a block of code at the end of the loop

that is executed at the end of each loop before the next
iteration

• However, if a redo or last command is executed within
the loop, Perl will skip the continue block of code

• The next command will always execute the continue
code before returning to the top of the loop to test for the
next iteration

• Sometimes it is useful to purposefully create an infinite loop,
and it's easy to do so in Perl:

while ()
{

Do something forever ...
}

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

A Looping Example
• This example is taken from Nigel Chapman's textbook

• We will construct a simple command interpreter which
controls the value of a single variable (not very useful, but it
will illustrate what we've seen so far)

• The user of this program can issue the following commands:

•up : adds one to the value
•down : subtracts one from the value
•zero : resets the value to 0
•quit : exits the program
•! : repeats the last command (if it was legal)

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

#!/usr/bin/perl -w

Set some variables to their initial state. We are just being nice, as
we don't have to do this in Perl.

$n = 0;
$last_cmd = '';

Tell Perl that output can be AUTOFLUSHED, i.e., no need to wait for a
new-line prior to writing output. Note: if we had included 'use English';
at the top of our script, we could refer to this special variable in
its English form: $OUTPUT_AUTOFLUSH.

$| = 1;

Look for some initial input from the user. Note that the output does not
include a new-line at the end, which is what we want.

print "\nThe value is: $n\nEnter a command? ";
chomp($_ = <STDIN>); # Note: $_ is $ARG if we 'use English;'.

Enter an infinite loop, and process commands until done.
while ()
{

We process the easy commands first.

if ($_ eq 'up')
{

++$n;
}
elsif ($_ eq 'down')
{

--$n;
}
elsif ($_ eq 'zero')
{

$n = 0;
}
elsif ($_ eq '!')
{

If we have a last command, we reprocess it, otherwise we have
no previous command. Note: if a string is empty, it is false.

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

if ($last_cmd)
{

$_ = $last_cmd;
redo;

}
else
{

print "No previous command to redo, sorry.\n";
next;

}
}
elsif ($_ eq 'quit')
{

We are done, so we use 'last' to exit from the loop.

last;
}
else
{

Tell the user that we do not know the command entered.

print "Unknown command << $_ >>.\n";
print "Use either up, down, zero, !, or quit.\n";
next;

}

Remember the last command (only if it was valid).

$last_cmd = $_;
}
continue
{

We always ask the user for another command before returning to the
top of the loop, which is why this code is in the 'continue' block.

print "\nThe value is: $n\nEnter a command? ";

chomp($_ = <STDIN>);
}

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Looping a Number of Times
• Perl supports the for looping construct, and it behaves

exactly as it does in C/C++/Java:

for ($i = 1; $i < 10; ++$i)
{

print 'The value of $i is: ', $i, "\n";
}

• Perl extends the notion of a for loop to provide a foreach
statement

• The foreach statement is used with arrays and lists, and
we’ll see how to use it later on in this course

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Block Expressions
• Perl allows you to write a sequence of statements (which

produce an expression result) anywhere that an expression is
expected

• This is accomplished with the do statement (which is not a
loop)

• Consider the following:

while (do
{

print "\nThe value is: $n\nEnter a command? ";
chomp($_ = <STDIN>);
$_ ne 'quit';

})

• If we had used this code with our simple interpreter, we
would remove the associated last statement and the
continue block (as they are no longer needed)

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Introducing Subroutines
• Call them what you like (subroutines, routines, functions,

procedures, methods ...), Perl has such a mechanism

• Here's a simple (stupid) example which shows the basic
structure:

sub stupid {
print "Hi! I'm stupid.\n";

}

• So, subroutines in Perl are introduced by the keyword sub,
followed by a subroutine name, followed by a block of code
to execute

• Perl is pretty easy going about subroutines - they can appear
anywhere within your script file, and do not need to be
declared before your code calls them

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

More Subroutine Stuff
• Having seen subroutines in other languages, we know to

expect more from them

• We want to be able to return results, use variables that are
local in scope to the subroutine, and, we want to be able to
pass arguments into the subroutine

• Not to be outdone, Perl lets you do all these things

• We will look at arguments after we have seen arrays, as
that's the mechanism Perl relies on to pass arguments into
subroutines

• Getting results and using local variables is real easy

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Getting Results from Subroutines
• Results can be generated in one of two ways

• We can use an explicit return statement:

return(42);

• which can appear anywhere in the subroutine

• We can also rely on Perl's default behaviour, that is, if a
return statement is not provided, Perl will treat the last
statement of the subroutine as an expression, and return the
result of the evaluated expression as the subroutines result:

sub stupid_too {
 $phrase = q[Hi! I'm stupid, too.];
}
print stupid_too, "\n";

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Local Variables within Subroutines
• We use Perl's built-in keyword my to indicate that a variable

used within a subroutine is local to the subroutine

• All other variables are global

• Watch out for variables declared as local within Perl
subroutines - this is a carry-over from earlier versions of Perl,
and has the effect of making the variable declared as local
to be available in its own subroutine, as well as in any
subroutines called from within its own subroutine (which
isn't really local, is it?)

• Always use my over local, but remember that a lot of older,
existing Perl scripts make extensive use of local (because
my wasn't available prior to Perl version 5)

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Example of Locals and Globals

• The following script:
sub really_stupid {

$phrase_g = q[Hi! I'm really_stupid's phrase_g.];
my ($phrase_l) = q[Hi! I'm really_stupid's phrase_l.];

print $phrase_g, "\n";
print $phrase_l, "\n";

}
really_stupid;
print 'The value of $phrase_g is : ' . $phrase_g, "\n";
print 'The value of $phrase_l is : ' . $phrase_l, "\n";

• will print as its output:
Hi! I'm really_stupid's phrase_g.
Hi! I'm really_stupid's phrase_l.
The value of $phrase_g is : Hi! I'm really_stupid's phrase_g.
The value of $phrase_l is :

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

One Final Subroutine Note
• We can call our subroutine simply by referencing its name:

really_stupid;

stupid_too;

• Prior to version 5 of Perl, subroutines were called with a
leading '&' character, as follows:

&really_stupid;

&stupid_too;

• If you just can't get out of the C/C++/Java function mind set,
you can also call subroutines this way:

really_stupid();
&really_stupid(); is also okay.
stupid_too();

• They all mean exactly the same thing, and in your Perl
travels you will see all of these uses - pick one, and stick to it

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Exception Handling
• Here's a nice quote from Nigel Chapman's book:

"... everything is easy until something goes wrong."

• We have already seen the use of die to kill any running
script, but, what if we want to catch errors and recover from
them?

• Perl supports exception handling, which is a concept familiar
to C++, Java, and Object Pascal programmers

• To do this, Perl provides the eval subroutine , which allows
us to execute any piece of Perl code:

eval " print STDOUT qq[Hello world!\n]; ";

• will cause another copy of the Perl interpreter to load, and
will pass the given Perl code to it for execution

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

More Exception Handling
• Interestingly, the following produces the same results:

$the_script = " print STDOUT qq[Hello world!\n]; ";
eval $the_script;

• Two things are important to note:
• Under normal program control (i.e., within a Perl script), we can

dynamically create a script for Perl to process
• By using eval in this way, we are assured some protection from the

Perl script in $the_script from causing problems

• Specifically, if a problem is detected, eval will return a
undefined value, and will put an error code into the built-in
variable $@ ($EVAL_ERROR if we ‘use English;’)

• Most noteworthy is that fact that a call to die, inside the
script passed to eval, does not cause the death of the script
that called eval - we catch the exception instead, and an
error message is put into the $@ variable

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Exception Handling Example
• The following script:

#!/usr/bin/perl -w

sub apollo_13 {
die "Houston, we have a problem!";

}

print "Inside main script ... \n";

eval { apollo_13 };

print "Message from Apollo 13: $@" if $@;
print "Still inside main script.\n";

• will produce the following output on screen:
Inside main script ...
Message from Apollo 13: Houston, we have a problem! at test.pl line 3.
Still inside main script.

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

