
Hash, Anyone?
• The word "hash" in Perl has a specific meaning: it refers to

Perl's implementation of an associative array

• In Perl, an associative array is like an array, but instead of
indexing into the array with numbers (as in $nums[2] for
the third element of the @nums list) you can index into the
array with any scalar value

• Think of the data structure as having two columns: a key (or
name) and a value

• In computer networking, we will often refer to name/value
pairs, and Perl's hash mechanism is a direct implementation
of this idea

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Identifying a Hash
• Scalars are identified with a $

• Lists (arrays) are identified with a @

• Hashes are identified with a %

• So, if we wanted to create a hash to store information about
favourite songs, we could create it like this:

my %favs = ();

• At this point, %favs is local to the script (or subroutine), and
is currently empty (it has no name/value pairs)

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Some Hashed Data
• Here's a table of favourite artists and songs, as name/value

pairs:

Artist Song

The Beatles St. Pepper's Lonely Hearts Club Band

John Lennon Cold Turkey

Paul McCartney Maybe I'm Amazed

Led Zeppelin Rock 'n' Roll

Crowded House When You Come

James Taylor Up On The Roof

• On the next three slides, we present three different ways of
initialising the %favs hash with this data (after all, this is
Perl and There's More Than One Way To Do It!)

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Hash Method #1

$favs{'The Beatles'} = "St. Pepper's Lonely Hearts Club Band";

$favs{'John Lennon'} = "Cold Turkey";

$favs{'Paul McCartney'} = "Maybe I'm Amazed";

$favs{'Led Zeppelin'} = "Rock 'n' Roll";

$favs{'Crowded House'} = "When You Come";

$favs{'James Taylor'} = "Up On The Roof";

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Hash Method #2

%favs = (

'The Beatles', "St. Pepper's Lonely Hearts Club Band",

'John Lennon', "Cold Turkey",

'Paul McCartney', "Maybe I'm Amazed",

'Led Zeppelin', "Rock 'n' Roll",

'Crowded House', "When You Come",

'James Taylor', "Up On The Roof"

);

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Hash Method #3

%favs = (

 'The Beatles' => "St. Pepper's Lonely Hearts Club Band",

 'John Lennon' => "Cold Turkey",

 'Paul McCartney' => "Maybe I'm Amazed",

 'Led Zeppelin' => "Rock 'n' Roll",

 'Crowded House' => "When You Come",

 'James Taylor' => "Up On The Roof"

);

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Getting at a Hash Entry
• When you want to refer to a particular hash entry, simply do

the following:

$curr_song = $favs{'John Lennon'};

• which will set the scalar $curr_song to the value
associated with the 'John Lennon' entry, which at the
moment is the scalar string 'Cold Turkey'

• Note, just like when we worked with a list element, the
element of a hash is referred to using the $ scalar notation,
not the %

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Iterating Over Hashes
• We want to be able to process each of the name/values pairs

associated with a particular hash

• We can use a while loop, together with the Perl each
function:

while (($artist, $song) = each %favs)
{

print "$artist has a song called $song\n";
}

• Note that the name/value pairs returned by each are in no
particular order, so don't assume that they are

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Hash Functions
• The keys function, when applied to a hash, returns a list

containing the name part of the name/value pairing

• The values function, when applied to a hash, returns a list
containing the value part of the name/value pairing

• Here's another example of iterating over a hash, which uses
keys to get at the names, and uses sort to ensure the
output is in alphabetical order:

foreach $artist (sort keys %favs)
{
print "$artist has a song called $favs{$artist}\n";

}

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Deleting from a Hash
• You can use the undef function to blank out an entry (the

value part) of a hash entry:

$favs{'Paul McCartney'} = undef;

• Note that the hash entry for 'Paul McCartney' is still in
the hash, we have simply blanked out the value part of the
name/value pairing

• To completely remove an entry from a hash, use the delete
function:

delete $favs{'Paul McCartney'};

• Now both parts of the name/value pairing are gone, and the
hash is one entry shorter

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Checking for Existence
• To check to see if a name has an associated value, use the

defined function:

print "$favs{'Crowded House'}\n" if defined $favs{'Crowded House'};

• will print the value associated with 'Crowded House' if it
is anything other than undef

• To see if an name/value pair already exists, use the exists
function:

unless (exists $favs{'REM'})
{
$favs{'REM'} = "It's The End Of The World As We Know It";

}

• will only add in the entry for 'REM' if no entry for 'REM'
previously existed in the hash %favs

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Limitations of Hashes
• The biggest problem with the use of hashes is that only one

value can be associated with each name

• If we were to do this in our code:

$favs{'John Lennon'} = 'Imagine';

• we would replace 'Cold Turkey' with 'Imagine' -
we do not create a second entry for 'John Lennon' as
hash entries are unique

• As the value part of the name/value pairing has to be a
scalar, we can't assign a list to the value part (as lists are not
scalars), so we are out of luck

• (Note: it's not all doom and gloom: the scalar value limitation
can be overcome with the use of Perl references)

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Another Hash Example
• Within every Perl script, the environment variables of the

enclosing operating system are available to you through an
in-built hash called %ENV

• Here's a simple script to print out the current set of
environment variables:

#!/usr/bin/perl -w

foreach $var (sort keys %ENV)
{
print "$var = $ENV{$var}\n";

}

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Using Hashes with Lists
• The Linux (UNIX) who command lists information on the

users currently logged in - here's an example of the output
from my home computer:

root tty1 Nov 9 22:28
barryp tty2 Nov 9 22:28
barryp tty3 Nov 9 22:28
root tty4 Nov 9 23:22
mysql tty5 Nov 9 22:10

• It would be nice to sort the list of user-id's and remove any
duplicates (note: in the real world, this list could be very
long, and would easily scroll off the screen)

• On the next page we present the Perl script to produce the
list the way we want it

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

pwho.pl

#!/usr/bin/perl -w

%unique = (); # The hash is initially empty.

On the next line, the use of `who` allows Perl to call an
operating system command and have the results delivered as
lined input to the script.

for (`who`)
{
s/\s.*\n//; # Remove unwanted space.
$unique{$_}++; # Update the hash with $_ (current thing).

}

@users = sort keys %unique; # Produce a sorted list.

print "The logged in users are: @users\n";

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

