Hash, Anyone?

* The word "hash" in Perl has a specific meaning: it refersto
Perl's implementation of an associative array

o In Perl, an associative array islike an array, but instead of
indexing into the array with numbers (asin $nuns[2] for
the third element of the @uns list) you can index into the
array with any scalar value

* Think of the data structure as having two columns: akey (or
name) and a value

* |n computer networking, we will often refer to name/value

pairs, and Perl's hash mechanism is a direct implementation
of thisidea

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

| dentifying a Hash
 Scalars are identified with a$
o Lists (arrays) are identified witha @
e Hashes are identified with a%

e SO, If we wanted to create a hash to store information about
favourite songs, we could create it like this:;

ny %avs = ();

* At thispoint, % avs islocal to the script (or subroutine), and
IS currently empty (it has no name/value pairs)

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Some Hashed Data

* Hereé's atable of favourite artists and songs, as name/value
pairs:

Arti st Song

The Beatl es St. Pepper's Lonely Hearts O ub Band
John Lennon Col d Turkey

Paul MCart ney Maybe |' m Anazed

Led Zeppelin Rock 'n' Roll

O owded House Wien You Cone

Janmes Tayl or Up On The Roof

* On the next three dlides, we present three different ways of
Initialising the % avs hash with this data (after all, thisis
Perl and There's More Than One Way To Do It!)

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Hash Method #1

$f avs{' The Beatl es'} "St. Pepper's Lonely Hearts d ub Band";
$favs{' John Lennon'} = "Cold Turkey";

$favs{' Paul McCartney'} = "Maybe |'m Anazed";

$favs{' Led Zeppelin'} = "Rock 'n'" Roll";

$f avs{' O owded House'} = "Wien You Cone";

$favs{' Janes Taylor'} = "Up On The Roof";

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Hash Method #2

% avs = (
'The Beatles', "St. Pepper's Lonely Hearts d ub Band",
*John Lennon', "Cold Turkey",
‘Paul McCartney', "Maybe |'m Anmazed",
‘Led Zeppelin', "Rock 'n" Roll",
'O owded House', "Wen You Cone",

*James Taylor', "Up On The Roof"
);

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Hash M ethod #3

% avs = (
"The Beatles' => "St. Pepper's Lonely Hearts d ub Band",
‘John Lennon' => "Col d Turkey",
"Paul McCartney' => "Maybe |I'm Arazed",
"Led Zeppelin' => "Rock 'n" Roll",
' G owded House' => "Wen You Cone",

"James Taylor' => "Up On The Roof"
)

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Getting at aHash Entry

* When you want to refer to a particular hash entry, smply do
the following:

$curr_song = $favs{' John Lennon'};

« which will set the scalar $cur r _song to the value
associated with the' John Lennon' entry, which at the
moment isthe scalar string' Col d Tur key'

 Note, just like when we worked with a list element, the

element of ahash isreferred to using the $ scalar notation,
not the %

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

|terating Over Hashes

* \WWe want to be able to process each of the name/values pairs
associated with a particular hash

* We can use awhi | e loop, together with the Perl each
function:

while (($artist, $song) = each % avs)
{

print "$artist has a song called $song\n";

}

 Note that the name/value pairs returned by each are in no
particular order, so don't assume that they are

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Hash Functions

* The keys function, when applied to a hash, returns alist
containing the name part of the name/value pairing

* Theval ues function, when applied to a hash, returns alist
containing the value part of the name/value pairing

» Here's another example of iterating over a hash, which uses
keys to get at the names, and usessor t to ensure the
output isin alphabetical order:

foreach $artist (sort keys % avs)

print "$artist has a song called $favs{$artist}\n";

}

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Deleting from a Hash

 You can usethe undef function to blank out an entry (the
value part) of a hash entry:

$favs{' Paul McCartney'} = undef;
e Note that the hash entry for ' Paul M Cart ney' isglillin
the hash, we have smply blanked out the value part of the
name/value pairing

» To completely remove an entry from ahash, usethedel et e
function:

del ete $favs{' Paul MCartney'};

* Now both parts of the name/value pairing are gone, and the
hash isone entry shorter

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Checking for Existence

e To check to see iIf a name has an associated value, use the
defined function:

print "$favs{' Crowded House'}\n" if defined $favs{' O owded House'};

e will print the value associated with' Gr owded House' if it
IS anything other than undef

* To see if an name/value pair already exists, usetheexi st s
function:

unl ess (exists $favs{' REM})
$favs{' REM} = "It's The End & The Wrld As W Know It";

e will only add intheentry for' REM if no entry for' REM
previoudly existed in the hash % avs

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

L imitations of Hashes

 The biggest problem with the use of hashesisthat only one
value can be associated with each name

o |f we wereto do thisin our code:
$f avs{' John Lennon'} = 'I1nmagi ne';

e wewould replace ' Col d Tur key' with' | nagi ne' -
we do not create a second entry for ' John Lennon' as
hash entries are unigque

» Asthe value part of the name/value pairing hasto be a
scalar, we can't assign alist to the value part (aslists are not
scalars), so we are out of luck

* (Note: it's not all doom and gloom: the scalar value limitation
can be overcome with the use of Perl references)

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Another Hash Example

e Within every Perl script, the environment variables of the
enclosing operating system are available to you through an
In-built hash called Y&ENV

* Here's a simple script to print out the current set of
environment variables;

#! [usr/bin/perl -w

foreach $var (sort keys %ENV)

{
print "$var = $SENV{$var}\n";

}

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Using Hasheswith Lists

e The Linux (UNIX) who command lists information on the
users currently logged in - here's an example of the output
from my home computer:

r oot ttyl Nov 9 22:28
barryp tty2 Nov 9 22:28
barryp tty3 Nov 9 22:28
r oot tty4d Nov 9 23:22
nysql ttyS Nov 9 22:10

e |t would be nice to sort the list of user-id's and remove any
duplicates (note: in the real world, thislist could be very
long, and would easily scroll off the screen)

 On the next page we present the Perl script to produce the
list the way we want it

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

pwho.pl

#!'/usr/bin/perl -w

%unique = (); # The hash is initially enpty.

On the next line, the use of "who allows Perl to call an
operating system comand and have the results delivered as
lined input to the script.

for ("who)
s/\s.*\n//; # Renove unwant ed space.
$uni que{$_} ++; # Update the hash with $ (current thing).

@isers = sort keys %uni que; # Produce a sorted |ist.

print "The | ogged in users are: @sers\n";

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

