
Input and Output in Perl
• We already know how to open a file and read its contents a

line at a time:
open INFILE, "data.txt" or

die "Could not open file to read: $!";

while (<INFILE>)
{
Do some processing on $_ ...

}

• To open a file for writing, we prefix the filename with a ">":
open OUTFILE, ">output.txt" or

die "Could not open file to write: $!\n";

• Note: the output.txt file is replaced with any new data
we send to it, i.e., it is overwritten

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Perl's Copy
• Here's how to write a standard file copy program in Perl

(assumes text files):

#!/usr/bin/perl -w

open FROM, "$ARGV[0]" or
die "Could not open file to copy FROM: $!\n";

open TO, ">$ARGV[1]" or
die "Could not open file to copy TO: $!\n";

print TO <FROM>;

• When opening a file for reading, you can be explicit and state
the above open command as:

open FROM, "<$ARGV[0]" or

die "Could not open file to copy FROM: $!\n";

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

STDIN and STDOUT
• The standard filehandles for input and output are opened

automatically by Perl

• Sometimes it is useful to control the filehandle STDIN and
STDOUT are associated with

• This next fragment of Perl code connects STDIN up to the
filehandle INPUT if a command line argument is passed to
the script, otherwise STDIN is opened as normal:

open INPUT, $ARGV[0] || '<-' or
die "Could not open input file: $!\n";

• The '<-' symbol is a pseudofile representing STDIN,
whereas '>-' represents STDOUT

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

More on Filehandles
• Again, remember that the '>' output specifier opens a file for

output, and, if it exists, overwrites its contents with the data
written

• To open a file while preserving its contents, use the append
specifier '>>':

open LOGFILE, '>>violations.log' or
die "Unable to append to log file: $!\n";

($sec, $min, $hour, $month_day, $month, $year) = gmtime();
++$month; $year += 1900;
print LOGFILE "Violation at $hour:$min:$sec on $month_day/$month/$year\n";

• To open a file for reading and writing, use '+<' to preserve
the contents before you process the file, or use '>+' to
overwrite the file contents:

open DATABASE, "+<mytextdbfile.txt" or

die "Could not open database file: $!\n";

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Reading and Writing to Pipes
• On Linux (UNIX) systems, we can pipe the output from one

command into another:

ls -lR | more

• The ls -lR command will execute the long version of the
ls command, and recursively access all subdirectories
looking for files to list, while the more command takes a file
as its standard input, and lets us view the file a page (screen
full) at a time

• We can use pipes as STDIN and STDOUT within Perl scripts:

open STDIN, 'ls -lR|' or
die "Unable to pipe from ls command: $!\n";

open STDOUT, '|lpr -Ppsc' or
die "Unable to pipe to printer at psc: $!\n";

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

The Current File and Line Number
• Here's a variation of the script from the end of the notes on

lists:
#!/usr/bin/perl -w

$string = shift;

while (<>)
{
print "Found: $string at line: $. in file: $ARGV\n" if /$string/;

}

• We look for the string passed in as a command line argument,
then if we find it, we print out the current line number of the
file being processed (which is in the built-in variable $.) as
well as the current filename (which is in the built-in variable
$ARGV)

• Note: $. can be referred to as $INPUT_LINE_NUMBER if
we 'use English;'

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

$. Perl Gotcha
• Unfortunately, if we feed the above script a collection of files,
$. is only reset whenever a filehandle is explicitly closed - I
ran the following command, knowing that only one file from
my collection of *.perl files contained the string
"barryp":

$ perl test.pl "barryp" *.perl

• and got the following output:

Found: barryp at line: 453 in file: io.perl
Found: barryp at line: 455 in file: io.perl
Found: barryp at line: 459 in file: io.perl
Found: barryp at line: 466 in file: io.perl

• when what I really expected to see was this:

Found: barryp at line: 18 in file: io.perl
Found: barryp at line: 20 in file: io.perl
Found: barryp at line: 24 in file: io.perl
Found: barryp at line: 31 in file: io.perl

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

$. Perl Gotcha (cont.)
• The Perl default (or null) filehandle comes to the rescue!

• The $ARGV filename has associated with it a filehandle called
ARGV

• If we check to see if the filehandle ARGV has reached the
end-of-file, we can close the filehandle and (as a side effect)
reset the $. variable to zero

• We add one line to the script, and then it works as we expect
it to:

#!/usr/bin/perl -w

$string = shift;
while (<>)
{
print "Found: $string at line: $. in file: $ARGV\n" if /$string/;

close ARGV if eof; #Note: 'eof' is a built-in Perl function.
}

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Line Ranges
• Here's a script which only prints the first 5 lines of each file

processed:

#/usr/bin/perl -w

while (<>)
{

print if 1..5; # Note: 1..5 is a line range.
}

• This script prints to the end of a file after it finds the first
blank line:

#/usr/bin/perl -w

while (<>)
{

print if /^$/..eof;
}

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Here Documents
• Problem: we want to print out a formatted multi line text

message

• We can easily do this with a whole bunch of print
commands, with each line of the output associated with a
single print statement:

print "psearch.pl: version 1.1, by Paul Barry, November 1999.\n\n"
print "Usage:\n"
print " perl psearch.pl \"search string\" <list of files>\n\n"
print " The psearch program looks for a given search string ...

• Note how we have had to concern ourselves with escaping
special characters such as "

• Of course, this is Perl, and There's More Than One Way To
Do It!

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Here Documents (cont.)
• Perl borrows a mechanism from the UNIX world and

implements a 'here document'

• Here documents allows us to more easily handle the above,
and (on the next slide) we extend our search program from
earlier to include a usage message which is implemented by
way of a here document

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

psearch.pl
#!/usr/bin/perl -w

$usage = <<USAGE_MSG;

psearch.pl: version 1.1, by Paul Barry, November 1999.

Usage:
 perl psearch.pl "search string" <list of files>

 The psearch.pl program looks for a given search string in the list of
 files provided on the command line. Here are some examples of its use:

perl psearch.pl "exit tutorial" tutor.doc
perl psearch.pl "stdio.h" common.h myproject.h
perl psearch.pl "ethernet" *.txt

USAGE_MSG

if ($#ARGV < 2) { print $usage; exit 1 }

$string = shift;

while (<>)
{

print "Found: $string at line: $. in file: $ARGV\n" if /$string/;

close ARGV if eof;
}

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Another Here Document Example
• Here's a short script which generates an even shorter web

page to STDOUT:

#!/usr/bin/perl

print <<END_HTML;
<HTML>
<HEAD>
<TITLE>A Really Short Web Page</TITLE>
</HEAD>
<BODY>
Hello World!
</BODY>
</HTML>

END_HTML

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Formatted Output
• If you are working with a formatted text file (the
/etc/passwd file is one such example), Perl provides a
simple, yet highly effective, report generation mechanism
using the format and write commands - if this interests
you, look up all the details in the man perlform

• Perl also supports the sprintf statement, which works
essentially the same way it does in C:

$string = sprintf "%02d:%02d:%02d\n”, $mins, $secs, $frames;
print $string;

• can also be written as:

print sprintf "%02d:%02d:%02d\n”, $mins, $secs, $frames;

• As the print sprintf combination is so common, Perl
supports the use of printf function as well

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Binary Files
• To open a file in binary mode, use the binmode function:

$ep = "Packet.EtherPeek";
open ETHEREEK, $ep or die "Could not open the binary file: $!\n";
binmode ETHERPEEK;

• We can now read from the file using the read function:

$bytes = read ETHERPEEK, $buffer, 256;

• will attempt to read 256 bytes from the ETHERPEEK
filehandle into a scalar variable called $buffer - the actual
number of bytes read are put into $bytes

• To write to a binary file, simply use the print function

• Random access within binary files is accomplished by the
seek and tell functions(which are just like those in C) -
see man perlfunc for more details

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Working with Binary Data
• Perl provides two useful functions, pack and unpack, that

can be used when working with data from binary files

• Let's assume that the 256 bytes read from the ETHERPEEK
filehandle has the following format:

Bytes: 1-10 is a version string
Byte: 11 is an unsigned version number
Bytes: 12-15 contain the current packet number
Bytes: 16-256 contain the packet data

• We can use unpack to extract the data from the 256 bytes
using a template:

($ver, $ver_num, $pack_num, $data) = unpack "A10INa240", $bytes

• where "A10" is an ASCII string 10 bytes long, "I" is an
unsigned integer, "N" is a four-byte integer, and "a240" is an
ASCII string which is 240 bytes long that can contain nulls

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

An Interesting unpack Example
• The following code computes a 16-bit checksum on any file

whose name you provide on the command-line:

#!/usr/bin/perl -w

$checksum = 0;

while (<>)
{
$checksum += unpack("%16C*", $_);

}

$checksum %= (2 ** 16) - 1;

print "The checksum for $ARGV is: $checksum\n";

• Refer to man perlfunc for more information on unpack,
templates, and the pack function (which can undo the work
of unpack)

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Files and Directories
• We can test files - before working with them - for certain

characteristics, using Perl's "dash" operators (this is just some
of them):

-r can we read from a file?
-w can we write to a file?
-x is the file executable?
-o do we own the file?
-e does the file exist?
-z is the file zero bytes long?
-s what size is the file?
-d is the file a directory?
-t is the file a terminal?
-T is the file a text file?
-B is the file a binary file?

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Opening File Example
• This is a little bit too cautious, but it does show the "dash

operators" in action:

#!/usr/bin/perl -w

$filename = "EtherPeek.Listing";

-e $filename or
die "$filename does not exist\n";

-r $filename or
die "$filename cannot be read from\n";

-s $filename or
die "$filename is empty (no contents)\n";

-T $filename or
die "$filename is binary\n";

open LISTING, $filename or
die "Some other problem opening $filename: $!\n";

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Directories
• Perl's support for working with directories and the files

residing therein mimics that provided by UNIX

• Functions such as rename and chdir work as you'd expect
them to, and the unlink function deletes a file from the
underlying file system

• When working with files in Perl, we use filehandles (as we
has already seen)

• Working with directories requires the use of directory
handles

• With filehandles we use open, read, and close

• With directory handles we use the opendir, readdir, and
closedir functions

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

pod2html.pl

• This example shows a potential use for the three directory
handle functions:

!/usr/bin/perl -w

sub pod2htmlDoIt
{

my $file = shift;

print "Processing $file ... ";
$cmd = "man2html $file ";
chop ($file); # remove the 1 char from eol.
chop ($file); # remove the . char from eol.
$cmd = $cmd . " > $file.html";
system $cmd;
print "\n";

}

opendir PERLDOCS, "/usr/barryp/perldocs";

@files = readdir PERLDOCS;

closedir PERLDOCS;

foreach $currentFile (@files)
{

pod2htmlDoIt ($currentFile) if $currentFile =~ /^perl/;
}

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

