| nput and Output in Per|

* We aready know how to open afile and read its contents a
lineat atime:

open I NFILE, "data.txt" or
die "Could not open file to read: $!";

while (<l NFILE>)

Do sone processing on $...

}

* To open afilefor writing, we prefix the filename with a">":

open QUTFILE, ">output.txt" or
die "Could not open file to wite: $!'\n";

* Note: the out put . t xt fileisreplaced with any new data
wesendtoit, i.e., it isoverwritten

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Perl's Copy

» Here's how to write a standard file copy program in Perl
(assumes text files):

#!'/usr/bin/perl -w

open FROM "$ARGV[0]" or
die "Could not open file to copy FROM $!'\n";

open TO ">$ARGV 1]" or
die "Could not open file to copy TO $!'\n";

print TO <FROW;

» When opening afile for reading, you can be explicit and state
the above open command as:

open FROM "<$ARGV 0]" or
die "Could not open file to copy FROM $!'\n";

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

STDIN and STDOUT

 The standard filehandles for input and output are opened
automatically by Perl

e Sometimes it i1s useful to control the filehandle STDI N and
STDQOUT are associated with

 This next fragment of Perl code connects STDI N up to the
filehandle | NPUT if acommand line argument is passed to
the script, otherwise STDI Nis opened as hormal:

open | NPUT, $ARGV[O] || '<-' or
die "Could not open input file: $!'\n";

The' <-' symbol isapseudofile representing STDI N,
whereas' >-' represents STDOUT

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Moreon Filehandles

e Again, remember that the '>' output specifier opens afile for
output, and, If it exists, overwrites its contents with the data
written

» To open afile while preserving its contents, use the append
specifier '>>".
open LOGFILE, '>>violations.log or
die "Unable to append to log file: $!'\n";
($sec, $min, $hour, $nonth_day, $nmonth, $year) = gntine();

++$nont h; $year += 1900;
print LOGFILE "Violation at $hour: $m n: $sec on $nont h_day/ $nont h/ $year\ n";

» To open afilefor reading and writing, use '+<' to preserve
the contents before you process the file, or use '>+' to
overwrite the file contents:

open DATABASE, "+<nytextdbfile.txt" or
die "Coul d not open database file: $'\n";

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Reading and Writing to Pipes

* On Linux (UNIX) systems, we can pipe the output from one
command into another:

ls -IR | nore

*The | s -1 Rcommand will execute the long version of the
| s command, and recursively access all subdirectories
looking for filesto list, while the nor e command takes afile
as Its standard input, and lets us view the file a page (screen
full) at atime

* We can use pipes as STDI Nand STDOUT within Perl scripts:

open STDIN, 'Is -IR" or
die "Unable to pipe fromls comand: $!'\n";

open STDQUT, '|Ilpr -Ppsc' or
die "Unable to pipe to printer at psc: $'\n";

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

The Current Fileand Line Number

» Here's a variation of the script from the end of the notes on
lists:
#!/usr/bin/perl -w
$string = shift;
while (<>)

print "Found: $string at line: $. in file: $ARGAN" if /$string/;
}

* We look for the string passed in as a command line argument,
then if we find it, we print out the current line number of the
file being processed (which isin the built-in variable $.) as
well asthe current filename (which isin the built-in variable

$ARGY)

* Note: $. can bereferred to as $I NPUT _LI NE_NUVBERif
we'use English;’

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

$. Perl Gotcha

« Unfortunately, if we feed the above script a collection of files,
$. isonly reset whenever afilehandleis explicitly closed - |
ran the following command, knowing that only one file from
my collection of *. per | filescontained the string
"barryp":

$ perl test.pl "barryp" *.perl

e and got the following output:

Found: barryp at line: 453 in file: io.perl
Found: barryp at line: 455 in file: io.perl
Found: barryp at line: 459 in file: io.perl
Found: barryp at line: 466 in file: io.perl

* when what | really expected to see wasthis:

Found: barryp at line: 18 in file: io0.perl
Found: barryp at line: 20 in file: io0.perl
Found: barryp at line: 24 in file: io.perl
Found: barryp at line: 31 in file: io0.perl

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

$. Perl Gotcha (cont.)

 The Perl default (or null) filehandle comes to the rescue!

» The ARGV filename has associated with it afilehandle called
ARGV

o |f we check to seeif the filehandle ARGV has reached the
end-of-file, we can close the filehandle and (as a side effect)
reset the $. variableto zero

* \We add one line to the script, and then it works as we expect
It to:

#!'/usr/bin/perl -w

$string = shift;
while (<>)

print "Found: $string at line: & in file: $ARGAN" if /$string/;

cl ose ARGV i f eof; #Note: 'eof' is a built-in Perl function.

}

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Line Ranges

» Here's a script which only printsthefirst 5 lines of each file
processed:

#/ usr/bin/perl -w
whil e (<>)

print if 1..5; # Note: 1..51is a |line range.
}

 This script printsto the end of afile after it finds the first
blank line:

#/ usr/bin/perl -w
whil e (<>)

print if /~$/..eof;
}

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Here Documents

 Problem: we want to print out a formatted multi line text
message

» We can easily do thiswith awhole bunch of pri nt
commands, with each line of the output associated with a
single print statement:

print "psearch.pl: version 1.1, by Paul Barry, Novenber 1999.\n\n"
print "Usage:\n"

print " perl psearch.pl \"search string\" <list of files>\n\n"
print " The psearch program | ooks for a given search string ...

 Note how we have had to concern ourselves with escaping
special characters such as”

» Of coursg, thisis Perl, and There's More Than One Way To
Do It!

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Here Documents (cont.)

* Perl borrows a mechanism from the UNIX world and
Implements a 'here document'

» Here documents allows us to more easily handle the above,
and (on the next slide) we extend our search program from
earlier to include a usage message which is implemented by
way of a here document

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

psear ch.pl

#! /usr/bin/perl -w
$usage = <<USAGE_M5G
psearch.pl: version 1.1, by Paul Barry, Novenber 1999.

Usage:
perl psearch.pl "search string" <list of files>

The psearch. pl program | ooks for a given search string in the list of
files provided on the command |ine. Here are sone exanples of its use:

perl psearch.pl "exit tutorial” tutor.doc
perl psearch.pl "stdio.h" common.h nyproject.h
perl psearch.pl "ethernet" *.txt
USAGE_MSG
if ($#ARGV < 2) { print $usage; exit 1}
$string = shift;
while (<>)
print "Found: $string at line: $. in file: $ARGAN" if /$string/;

close ARGV if eof;
}

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Another Here Document Example

* Here's a short script which generates an even shorter web
page to STDOUT:

#! [usr/ bi n/ perl

print <<END HTMj;

<HTM_>

<HEAD>

<TI TLE>A Real |y Short Wb Page</ Tl TLE>
</ HEAD>

<BODY>

Hell o Worl d! </ B>

</ BODY>

</ HTM_>

END HTM.

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Formatted Output

e If you are working with aformatted text file (the
/ et ¢/ passwd fileis one such example), Perl provides a
simple, yet highly effective, report generation mechanism
using thef or nat and wr i t e commands - if this interests
you, look up al the detailsintheman perl f orm

e Perl also supportsthespri nt f statement, which works
essentially the same way it doesin C:

$string = sprintf "902d: ¥02d: %02d\ n”, $m ns, $secs, $franes;
print $string;

e can also be written as:

print sprintf "902d: 9%92d: 992d\n”, $mns, $secs, $franes;

e Astheprint sprintf combinationissocommon, Perl
supportsthe use of pri nt f function aswell

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Binary Files

» To open afilein binary mode, use the bi nnode function:

$ep = "Packet . Et her Peek";
open ETHEREEK, $ep or die "Could not open the binary file: $'\n";
bi nnode ETHERPEEK;

* We can now read from the file using the r ead function:

$bytes = read ETHERPEEK, $buffer, 256;

« will attempt to read 256 bytes from the ETHERPEEK
filehandle into a scalar variable called $buf f er - the actual
number of bytes read are put into $byt es

* Towriteto abinary file, smply usethe pri nt function

» Random access within binary filesis accomplished by the
seek andt el | functions(which arejust like thosein C) -
see ran per | f unc for more details

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Working with Binary Data

* Perl provides two useful functions, pack and unpack, that
can be used when working with datafrom binary files

o Let's assume that the 256 bytes read from the ETHERPEEK
filenandle has the following format:

Bytes: 1-10 is a version string

Byte: 11 is an unsigned version nunber
Bytes: 12-15 contain the current packet nunber
Bytes: 16-256 contain the packet data

* We can use unpack to extract the data from the 256 bytes
using atemplate:

($ver, $ver _num $pack num S$data) = unpack "Al10l Na240", $bytes

* where"A10" isan ASCII string 10 byteslong, "I " isan
unsigned integer, "N' is afour-byte integer, and "a240" isan
ASCII string which is 240 bytes long that can contain nulls

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

An Interestingunpack Example

 The following code computes a 16-bit checksum on any file
whose name you provide on the command-line:

#!'/usr/bin/perl -w
$checksum = 0;
while (<>)

$checksum += unpack("%d6C", $);
}

$checksum % (2 ** 16) - 1;
print "The checksumfor $ARGV is: $checksum n";

e Refer toman per | f unc for more information on unpack,
templates, and the pack function (which can undo the work
of unpack)

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Filesand Directories

* We can test files - before working with them - for certain
characteristics, using Perl's "dash" operators (thisis just some
of them):

-r can we read froma file?

-w can we wite to a file?

-X 1s the file executabl e?

-0 do we own the file?

-e does the file exist?

-z I1s the file zero bytes | ong?
-S what size 1s the file?

-d Isthe file a directory?
-t I1sthefile atermnal?
-T Isthe file a text file?
-B Isthe file a binary file?

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Opening File Example

e Thisisalittle bit too cautious, but it does show the "dash
operators' in action:

#!'/usr/bin/perl -w
$fil enane = "Et her Peek. Li sting";

-e $filenane or
die "$fi |l ename does not exist\n";

-r $fil enanme or
die "$fi |l ename cannot be read fromn";

-s $filenane or
die "$filename is enpty (no contents)\n";

-T $fil enane or
die "$filenane is binary\n";

open LISTING $fil ename or
die "Sone ot her probl em opening $fil enane: $'\n";

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Directories

* Perl's support for working with directories and the files
residing therein mimics that provided by UNIX

e Functions such asr enane and chdi r work as you'd expect
them to, and the unl i nk function deletes afile from the
underlying file system

* When working with files in Perl, we use filehandles (as we
has already seen)

« Working with directories requires the use of directory
handles

» With filehandles we use open, r ead, and cl ose

« With directory handles we use the opendi r, r eaddi r, and
cl osedi r functions

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

pod2html.pl

 This example shows a potential use for the three directory
handle functions:

I'/usr/bin/perl -w
sub pod2ht mi Dol t
ny $file = shift;

print "Processing $file ...
$cnd = "man2htnl $file "

chop ($file); # renove the 1 char from eol.
chop ($file); # renove the . char from eol.
$cnd = $cnd . " > $file.htm”;

syst em $cnd;

print "\n";

}
opendi r PERLDQOCS, "/usr/barryp/perldocs”;

@il es = readdir PERLDCCS;
cl osedi r PERLDCCS;
foreach $currentFile (@il es)

pod2ht m Dolt ($currentFile) if $currentFile =~ /" perl/;
}

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

