Perl Lists

* Note: we often refersto 'lists as'arrays, and vice-versa

o In Perl, all arrays are dynamic (they may grow and shrink as
your program runs), so it’suseful to think of arraysaslists

* Hare'sasimple list of the first ten prime numbers.
1, 2, 3, 5, 7, 11, 13, 17, 19, 23

» Note: lists can also be enclosed in brackets, If needs be -
here's another simplelist:

(1, 2, 3, 4, 5)
 which can also be written as alist range:

(1..5)

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

List Ranges
* \We can also generate alist using non-numeric values:
1 Aal o 1 Akl
* Is shorthand for:
"Aa', "Ab', "Ac', 'Ad', "Ae', "A', "Ag', "AN, "A', "A"', "AK
e If we have the following list:
"first', '"second', 'third, "fourth', 'fifth', 'sixth', 'seventh'

 \We can use the following shorthand to represent exactly the
same thing:

gw(first second third fourth fifth sixth seventh)

 Theqw stands for 'quoted words

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Naming Lists

 We use $ with scalar variables, and we use an @ with lists:

@nal | _primes = (1, 2, 3, 5, 7, 11, 13, 17, 19, 23);

 Note that the individual elements of thelist are all scalars
* We can copy lists:

@opy_snal | _prines = @nal | _pri nes;
* And we can also add to lists as part of the copy:

@ore snall_prinmes = (0, @nall _prines, 29);

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Printing Lists

* \WWe can use interpolation to print out the values of lists:

print "Small prinmes is set to: @nmall_prinmes\n";

e will produce:
Smal | prinmes is set to: 12 357 11 13 17 19 23

o |f we don't print from within an interpolated string, things can
get strange:
print @nmall _prines;

e will produce:
123571113171923

 Note: by default, the interpolation will use a space character
to separate list items on output - this space is stored inside the
In-built $" variable, whichiscaled $LI ST SEPARATORIf
we ‘use Engli sh; ‘- changing $" to some other value
will effect the output produced by interpolation

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

| ndividual Elementsof Lists

* We can index into alist, and indexed elements always start
at zero - remembering that list elements are all scalars, we
can accessthefirst edlement of alist like this:

$first_elenment = $small _prinmes[0];

e which will set the scalar $f i r st _el enent tothevauel,
whichisthefirst ementinthe @nmal | _pri nes list
(which isalso ascalar) - note that we did not use
@mal | _prinmes| 0]

 Consider the following:

$smal | _prines[10] = 29;
print "Small prinmes is now set to: @nall _prines\n";

 will produce as outpuit:
Small prinmes is nowset to: 12357 11 13 17 19 23 29

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

How Many Elements?

 Assumewe havealistcaled @arry wal | - wecan
access the highest value of its subscript as follows:

@arry wall = gw(this is a list in honour of Larry Wall);
print "\@arry wall is currently set to: @arry_wall.\n";
print "The highest subscript value of \@arry_wall is: $#larry_wall.\n";

$how _many = $#l arry_wal | +1;

print "Wich means we have $how nmany el enents in the list.\n"

e produces as output:

@arry wall is currently set to: thisis alist in honour of Larry Vall.

The hi ghest subscript value of @arry wall is: 8.

Whi ch neans we have 9 elenents in the |ist.

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

More Shrinking and Growing

o _et'sassume alist will grow, and that it will have 1000
elements - we can tell Perl this (assuming the list is called
@1 bonacci) asfollows:

$#f i bonacci = 999:;

e which will cause the creation of alist called @1 bonacci
with 1000 empty elements

o Later in our program, we might decide we don't want as big
alist after all, so we can do the following to shrink the list:

$#f i bonacci = 99:

 Note: if anything was stored beyond the 100th element, it is
now gone, and Perl's memory management garbage
collection mechanism will reclaim the RAMit used

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Using f or with Lists

» Consider the following script:

$ = "\tn

@quares = (1..10);

print "@quares\n";

for ($i =0; $i < 10; ++$i)

$squares[$i] *= $squares[$i];

print "@quares\n";

e With lists, we can use the f or each looping construct to
make this more convenient:

@quares(1..10);
foreach $s (@quares)

$s *= $s;
}

* Note: $s isasynonym for the current element of @ quar es,
so updates to $s effect the current element of @ quar es

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Listsas Structures

* You can simulate asmplest ruct (orr ecord) using lists,
aswell as extract individual values (fields) from the struct,
change them, then put them back into the list, as follows:

@oord 3D = (100, 200, -200);
print "@oord 3D\n";
($x, By, $z) = @oord 3D

print "$x ="' . $. ', $y =" . %y . ', $z =" . $z, "\n";
$x /=2
Sy /=2
$z /=2
print "$x ="' . $. ', $y =" . %y . ', $z =" . $z, "\n";

@oord 3D = ($x, %y, $2);
print "@oord_3D\n";

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Lists and Built-in Functions

* A large number of Perl functions return lists as their result

($sec, mn, SShour, $nonth_day, $nonth, $year, Sweek day,
$year day, $summer _tinme) = gntine;

++$nont h;

$year += 1900; # Look: no Y2K bugs here!

print "The date is: $nonth _day/ $nont h/ $year\ n";

 will produce as outpuit:

The date is: 7/11/1999

 Thegmt | ne function isinteresting, asit can provide alist as
Its result (above), or ascalar - for example, the following

code;
print $dt = gnmine, "\n";

 will produce as outpuit:

Sun Nov 7 07:24: 30 1999

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Moreon List Functions

* Again, taking gnt | ne as our example, let's say we are only
Interested in the current time, so we can do this:
($sec, $mn, $hour) = gntine;

« We can also retrieve the rest of the gnt | e list as one thing
(.e., alist) asfollows.

($sec, $nin, $hour, @he_rest) = gntine;

* When it comes to assignments, the RHS of the assignment is
completely evaluated before the assignment takes place, and,
as an example, here's the Perl version of the classic "let's
swap the contents of two variables' problem:

($a, $b) = ($b, $a);

* Note: Perl does not require the use of atemporary variable

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Calling Context

 Consider the following:

@y list = gwmthis is ny list);

print "@uy_list\n";
print $size = @y_list, "\n";

@y list = (@y_ list, gMand a little bit nore));

print "@y_list\n";
print scalar @y_list, "\n",

 will produce as output:

this is ny list
4
thisisny list and alittle bit nore

9

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Calling Context and Files

» We already know that the next line reads from the filehandle
MYFI LE and assigns the line read to the variable $I i ne:

$li ne = <WFI LE>;

o If we assign what's read to alist, we get the entire file:

@il e = <MYFI LE>;
 This can be useful, but dangerous ...

* With @ 1 | e set as above, we can use it like any other list
and pass it to functions that know about lists - chonp isone

such function:
chonmp(@il e);

« which will remove the new-line character from every line
read intothelist @1 | e

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Calling Context Example

* Here is yet another version of our first Perl script:

#! [usr/ bi n/ perl

@ile = (<>);
print @il e;

e Warning: although thisworks, it is harder to extend than the
original - how would you go about only printing lines from
the/ et c/ f st ab filethat contained the pattern / cdr ont
anywhere in the line?

 Note that the following would definitely NOT work:

@ile = (<>);
print @ile if /cdront;

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Calling Context and Subroutines

 Perl allows usto write subroutines that return either alist or
a scalar based on the context within which they are called:

sub the first _primes {
@rimes = (1, 2, 3, 5 7, 11, 13, 17, 19, 23);

return wantarray ? @rinmes : ($#prinmes+l);

}
@ist = the first_prines;
$scalar = the first _prines;

print "The subroutine returned the |ist val ue: @ist\n";
print "The subroutine returned the scalar val ue: $scal ar\n";

 will produce as output:

The subroutine returned the |ist val ue: 12357 11 13 17 19 23
The subroutine returned the scal ar val ue: 10

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

List Functions

e Ther ever se function will takealist and return it in
reversed order

e Here's a quick one-liner to reverse the line contents of any
file:

print reverse(<>);

e Thesort functionisabit more useful:

@orted = sort gwone two three four five);
print "@orted\n";

 To sort in descending order, pass the resultsfrom sort to
rever se:

@orted = reverse sort gwone two three four five);
print "@orted\n";

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Processing Every List Element

* Thegr ep and nmap functions allow usto apply a
computation to every element in alist

* The gr ep function returns alist of the elements for which the
evaluation produces atrue value

S0, applying the following script to/ et ¢/ passwd.

@ash_entries = grep { nm/bin/bash$] } <>;
print "Matching Entries are:\n@ash_entries\n";

» will produce as output alist consisting of the/ et ¢/ passwd
entries for users of the Bash Shell, which gave this output on
my home system:

Mat ching entries are:
root: x:0:0:root:/root:/bin/bash
postgres: x: 17: 17: Post gres User:/ hone/ post gres: /bi n/ bash

bar ryp: x: 500: 100: Paul Barry:/hone/ barryp:/bin/bash

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Getting Just The Results

e The map function allows usto return alist consisting of the
results of the computation:

@ash _users = map { nf (M w+).*/bin/bash$] ; $1 } <>;
print "Bashers on this systemare:\n";

foreach $b (@ash_users)

{

print " User =", $b, "\n" if defined($b);
}

» will produce (again on my home Linux system):

Bashers on this system are:

User = root
User = postgres
User = barryp

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Splitting Lists

 Wecanusethespl i t functionto dividealist into parts
based on adelimiter

* Note: spl I t returnsthe partsasalist

* Again, we will usethe/ et ¢/ passwd file as an example -
here's an extract from the file on my home computer:

nmaj or dom x: 16: 16: Maj ordono: /:/ bin/fal se

postgres: x: 17: 17: Post gres User:/ hone/ post gres: /bi n/ bash
nysql : x: 18: 18: MySQL User:/var/lib/nysql:/bin/false
nobody: x: 65534: 65534: Nobody: /:/bi n/fal se

barryp: x: 500: 100: Paul Barry:/hone/ barryp:/bin/ bash

 Note that the file has a record on each line with 7 fields, each
separated by asingle : character

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Splitting Passwords

e Here's a script to print out the users that use some sort of
shell:

#!/ usr/ bi n/ perl

W don't want to '/usr/bin/perl -w here, as Perl will conplain
about the throw away variables $a, $b, $c, $d, and $e.

\{/\lnile (<>)

$passwd _line = $_; # Copy the current |line contents.

chomp($passwd_line);

($user, $a, $b, $c, $d, $e, $shell) = split /:/, $passwd_li ne;

print "User: '", $user, "' uses: ", $shell, "\n" unless $shell eq "";
}

 Results of Splitting Passwords

User: 'root' wuses: /bin/bash

User: 'sync' uses: /bin/sync

User: 'shutdown' uses: /sbin/shutdown
User: 'halt' uses: /sbin/halt

User: 'maj ordom uses: /bin/false
User: 'postgres' uses: /bin/bash
User: 'nysgl' uses: /bin/false

User: 'nobody' uses: /bin/false

User: 'barryp' uses: /bin/bash

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

More Splits

* The pattern and string argumentsto spl i t are optional - if
missing, spl i t will split$_ on whitespace, so:

$ ="thisis atest of split";
@ine list =split;

foreach $w (@ine_list)

{

print $w, "\n";

}

 will produce as output each word contained within $_ onits
own line

e Check man per| f unc for moredetailsonspl i t
e The| ol n function allows us to create a delimited record:

print join ':', $user, $a, $b, $c, $d, e, Sshell;

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Shifting

e Theshi ft function returns and removes the first element of
the ligt:

@uns = gwmone two three four five);
$first_num= shift @uns; # $first_numis set to 'one'.
print "@uns\n";

* We can add to the start of alist using theunshi f t function:

unshi ft @wuns, 'one';
print "@uns\n";

* The following does nothing (except waste val uable processor
cycles):

unshi ft @wuns, (shift @uns);

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Pop and Push

e The pop function operates on the end of thelist, returning the
last element as its result:

@uns = gwmone two three four five);
$last_ num = pop @uns; # $last numis set to 'five'.
print "@uns\n";

* The push function (surprise, surprise) appends an element to
the end of alist:

push @uns, 'five';
print "@uns\n";

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Simple List Data Structures

» Using push and pop on any list makes it behave like a
LI FOstack

 Thesameisasotrueof usngshi ft andunshi ft together

e Using push and shi ft together, or usingunshi ft and
pop together, letsyou treat the list asa FI FOqueue

e If you use all four together, then lists can behave like double-
ended queues (or deques)

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Splice

e Splicing and dicing of listsis possible withthespl i ce
function, which has the genera form:

splice @one_list, $offset, $length, @ome_other |ist;

e where $of f set isalocation within @ome | i st to start
at (remembering that we start counting at zero), $l engt h is
the number of e ementsto remove, and
@one_ot her |1 st isalisttoputinto @one |1 st in
place of the elements removed

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Splice Example

 For example, given:

@uns = (1, 2, 3, 4, 5 6);
@umwords = gMthree four four _and a half five);
splice @uns, 2, 3, @umwords;

print "@uns\n";

 will produce as outpuit:

1 2 three four four _and a half five 6

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Moreon Splice

o If we omit areplacement list, spl I ce smply deletesthe
entries from the original list:

@uns = (1, 2, 3, 4, 5, 6),
splice @uns, 2, 3;
print "@uns\n";
 will produce as output:
126

e If we omit alength value, spl i ce deletes from the offset to
the end of thelist

e Asyou may have guessed, spl | ce returnsthe items
removed in the form of alist

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Lists and Subroutines

 Now that we know about lists, we can revisit subroutines to
learn how Perl| passes arguments into subroutines

* Yes, you guessed it, they get passed as lists

 Fans of 'traditional’ programming languages prepare to be
shocked: strange though it may seem, you do not have to
provide named arguments to your subroutines in Perl (Gasp!
Horror! How can this be?!)

 Within your subroutine, the list of arguments passed in (if
any) are avallableto you in the Perl list variable @ (whichis
caled Q\RGIf we'use Engl i sh; ")

e Thisisreally important: the values passed in are passed by
reference - changes to the values within the subroutine
change the corresponding values in the calling code

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Call By Value

» To alow you to preserve the contents of the variables within
the calling code, Perl requires you to create variables that
will be local to your subroutine, and that will contain copies
of the passed by reference variables

 We do this with the ny function (in combination with
shift):

sub ny_copy {
ny $copy_one = shift @; # Note: the @ is optional;
$copy_one = "one has been changed";

$ [0] = "two has been changed"; # Wiy zero?
$one = "this is one";
$two = "this is two";
ny_copy ($one, $two);

print '$one
print '$two

" . $one, "\n";
"L $two, "\n";

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Command Line Arguments

 Our script can receive arguments from the command line (i.e,,
the bash shell)

o If provided, these are available within our Perl scripts as
elements of alist called GARGV

 This next script takes two arguments: a string to search for,
and afileto search in:

#!'/usr/bin/perl -w

$string = $ARGV 0] ;
$file = SARGV 1] ;

open FILE, $file or die "Cannot open $file\n";
whi l e (<FI LE>)

print if /$string/;
}

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

More on Command Line Arguments

 The previous script was useful, but it gets into trouble if we
feed it more than one file to process

* We already know (from our very first Perl script) that the
whi | e (<>) code will work on multiple files, and rather
than rewrite code to ssmulate this, we'd like our script to take
advantage of this default behaviour

 But, what do we do with the first argument, which isthe
string to search for?

 The solution is surprisingly simple:
#!/usr/bin/perl -w

$string = shift; # W shift the first command-|ine argunent.
while (<>) # W use the default behaviour as is.

print if /$string/;
}

Copyright (c) 1999 by Paul Barry, |IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

