
Perl Lists
• Note: we often refers to 'lists' as 'arrays', and vice-versa

• In Perl, all arrays are dynamic (they may grow and shrink as
your program runs), so it’s useful to think of arrays as lists

• Here's a simple list of the first ten prime numbers:

1, 2, 3, 5, 7, 11, 13, 17, 19, 23

• Note: lists can also be enclosed in brackets, if needs be -
here's another simple list:

(1, 2, 3, 4, 5)

• which can also be written as a list range:

(1..5)
Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

List Ranges
• We can also generate a list using non-numeric values:

'Aa'..'Ak'

• is shorthand for:

'Aa', 'Ab', 'Ac', 'Ad', 'Ae', 'Af', 'Ag', 'Ah', 'Ai', 'Aj', 'Ak'

• If we have the following list:

'first', 'second', 'third', 'fourth', 'fifth', 'sixth', 'seventh'

• We can use the following shorthand to represent exactly the
same thing:

qw(first second third fourth fifth sixth seventh)

• The qw stands for 'quoted words'

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Naming Lists
• We use $ with scalar variables, and we use an @ with lists:

@small_primes = (1, 2, 3, 5, 7, 11, 13, 17, 19, 23);

• Note that the individual elements of the list are all scalars

• We can copy lists:

@copy_small_primes = @small_primes;

• And we can also add to lists as part of the copy:

@more_small_primes = (0, @small_primes, 29);

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Printing Lists
• We can use interpolation to print out the values of lists:

print "Small primes is set to: @small_primes\n";

• will produce:
Small primes is set to: 1 2 3 5 7 11 13 17 19 23

• If we don't print from within an interpolated string, things can
get strange:

print @small_primes;

• will produce:
123571113171923

• Note: by default, the interpolation will use a space character
to separate list items on output - this space is stored inside the
in-built $" variable, which is called $LIST_SEPARATOR if
we ‘use English;‘ - changing $" to some other value
will effect the output produced by interpolation

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Individual Elements of Lists
• We can index into a list, and indexed elements always start

at zero - remembering that list elements are all scalars, we
can access the first element of a list like this:

$first_element = $small_primes[0];

• which will set the scalar $first_element to the value 1,
which is the first element in the @small_primes list
(which is also a scalar) - note that we did not use
@small_primes[0]

• Consider the following:
$small_primes[10] = 29;

print "Small primes is now set to: @small_primes\n";

• will produce as output:

Small primes is now set to: 1 2 3 5 7 11 13 17 19 23 29

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

How Many Elements?
• Assume we have a list called @larry_wall - we can

access the highest value of its subscript as follows:

@larry_wall = qw(this is a list in honour of Larry Wall);

print "\@larry_wall is currently set to: @larry_wall.\n";

print "The highest subscript value of \@larry_wall is: $#larry_wall.\n";

$how_many = $#larry_wall+1;

print "Which means we have $how_many elements in the list.\n"

• produces as output:

@larry_wall is currently set to: this is a list in honour of Larry Wall.

The highest subscript value of @larry_wall is: 8.

Which means we have 9 elements in the list.

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

More Shrinking and Growing
• Let's assume a list will grow, and that it will have 1000

elements - we can tell Perl this (assuming the list is called
@fibonacci) as follows:

$#fibonacci = 999;

• which will cause the creation of a list called @fibonacci
with 1000 empty elements

• Later in our program, we might decide we don't want as big
a list after all, so we can do the following to shrink the list:

$#fibonacci = 99;

• Note: if anything was stored beyond the 100th element, it is
now gone, and Perl's memory management garbage
collection mechanism will reclaim the RAM it used

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Using for with Lists
• Consider the following script:

$" = "\t";
@squares = (1..10);
print "@squares\n";
for ($i = 0; $i < 10; ++$i)
{
$squares[$i] *= $squares[$i];

}

print "@squares\n";

• With lists, we can use the foreach looping construct to
make this more convenient:

@squares(1..10);
foreach $s (@squares)
{
$s *= $s;

}

• Note: $s is a synonym for the current element of @squares,
so updates to $s effect the current element of @squares

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Lists as Structures
• You can simulate a simple struct (or record) using lists,

as well as extract individual values (fields) from the struct,
change them, then put them back into the list, as follows:

@coord_3D = (100, 200, -200);

print "@coord_3D\n";

($x, $y, $z) = @coord_3D;

print '$x = ' . $x . ', $y = ' . $y . ', $z = ' . $z, "\n";

$x /= 2;
$y /= 2;
$z /= 2;

print '$x = ' . $x . ', $y = ' . $y . ', $z = ' . $z, "\n";

@coord_3D = ($x, $y, $z);

print "@coord_3D\n";

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Lists and Built-in Functions
• A large number of Perl functions return lists as their result

($sec, $min, $hour, $month_day, $month, $year, $week_day,
$year_day, $summer_time) = gmtime;
++$month;
$year += 1900; # Look: no Y2K bugs here!

print "The date is: $month_day/$month/$year\n";

• will produce as output:
The date is: 7/11/1999

• The gmtime function is interesting, as it can provide a list as
its result (above), or a scalar - for example, the following
code:

print $dt = gmtime, "\n";

• will produce as output:
Sun Nov 7 07:24:30 1999

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

More on List Functions
• Again, taking gmtime as our example, let's say we are only

interested in the current time, so we can do this:
($sec, $min, $hour) = gmtime;

• We can also retrieve the rest of the gmtime list as one thing
(i.e., a list) as follows:

($sec, $min, $hour, @the_rest) = gmtime;

• When it comes to assignments, the RHS of the assignment is
completely evaluated before the assignment takes place, and,
as an example, here's the Perl version of the classic "let's
swap the contents of two variables" problem:

($a, $b) = ($b, $a);

• Note: Perl does not require the use of a temporary variable

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Calling Context
• Consider the following:

@my_list = qw(this is my list);

print "@my_list\n";
print $size = @my_list, "\n";

@my_list = (@my_list, qw(and a little bit more));

print "@my_list\n";

print scalar @my_list, "\n";

• will produce as output:
this is my list
4
this is my list and a little bit more

9

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Calling Context and Files
• We already know that the next line reads from the filehandle
MYFILE and assigns the line read to the variable $line:

$line = <MYFILE>;

• If we assign what's read to a list, we get the entire file:

@file = <MYFILE>;

• This can be useful, but dangerous ...

• With @file set as above, we can use it like any other list
and pass it to functions that know about lists - chomp is one
such function:

chomp(@file);

• which will remove the new-line character from every line
read into the list @file

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Calling Context Example
• Here is yet another version of our first Perl script:

#!/usr/bin/perl

@file = (<>);
print @file;

• Warning: although this works, it is harder to extend than the
original - how would you go about only printing lines from
the /etc/fstab file that contained the pattern /cdrom/
anywhere in the line?

• Note that the following would definitely NOT work:

@file = (<>);
print @file if /cdrom/;

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Calling Context and Subroutines
• Perl allows us to write subroutines that return either a list or

a scalar based on the context within which they are called:
sub the_first_primes {
@primes = (1, 2, 3, 5, 7, 11, 13, 17, 19, 23);

return wantarray ? @primes : ($#primes+1);
}

@list = the_first_primes;

$scalar = the_first_primes;

print "The subroutine returned the list value: @list\n";

print "The subroutine returned the scalar value: $scalar\n";

• will produce as output:
The subroutine returned the list value: 1 2 3 5 7 11 13 17 19 23

The subroutine returned the scalar value: 10

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

List Functions
• The reverse function will take a list and return it in

reversed order

• Here's a quick one-liner to reverse the line contents of any
file:

print reverse(<>);

• The sort function is a bit more useful:
@sorted = sort qw(one two three four five);

print "@sorted\n";

• To sort in descending order, pass the results from sort to
reverse:

@sorted = reverse sort qw(one two three four five);

print "@sorted\n";

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Processing Every List Element
• The grep and map functions allow us to apply a

computation to every element in a list

• The grep function returns a list of the elements for which the
evaluation produces a true value

• So, applying the following script to /etc/passwd:
@bash_entries = grep { m[/bin/bash$] } <>;

print "Matching Entries are:\n@bash_entries\n";

• will produce as output a list consisting of the /etc/passwd
entries for users of the Bash Shell, which gave this output on
my home system:

Matching entries are:
root:x:0:0:root:/root:/bin/bash
postgres:x:17:17:Postgres User:/home/postgres:/bin/bash

barryp:x:500:100:Paul Barry:/home/barryp:/bin/bash

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Getting Just The Results
• The map function allows us to return a list consisting of the

results of the computation:

@bash_users = map { m[(^\w+).*/bin/bash$] ; $1 } <>;

print "Bashers on this system are:\n";

foreach $b (@bash_users)
{
print " User = ", $b, "\n" if defined($b);

}

• will produce (again on my home Linux system):

Bashers on this system are:
 User = root
 User = postgres
 User = barryp

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Splitting Lists
• We can use the split function to divide a list into parts

based on a delimiter

• Note: split returns the parts as a list

• Again, we will use the /etc/passwd file as an example -
here's an extract from the file on my home computer:

majordom:x:16:16:Majordomo:/:/bin/false
postgres:x:17:17:Postgres User:/home/postgres:/bin/bash
mysql:x:18:18:MySQL User:/var/lib/mysql:/bin/false
nobody:x:65534:65534:Nobody:/:/bin/false
barryp:x:500:100:Paul Barry:/home/barryp:/bin/bash

• Note that the file has a record on each line with 7 fields, each
separated by a single : character

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Splitting Passwords
• Here's a script to print out the users that use some sort of

shell:
#!/usr/bin/perl

We don't want to '/usr/bin/perl -w' here, as Perl will complain
about the throw-away variables $a, $b, $c, $d, and $e.

while (<>)
{

$passwd_line = $_; # Copy the current line contents.
chomp($passwd_line);
($user, $a, $b, $c, $d, $e, $shell) = split /:/, $passwd_line;
print "User: '", $user, "' uses: ", $shell, "\n" unless $shell eq "";

}

• Results of Splitting Passwords
User: 'root' uses: /bin/bash
User: 'sync' uses: /bin/sync
User: 'shutdown' uses: /sbin/shutdown
User: 'halt' uses: /sbin/halt
User: 'majordom' uses: /bin/false
User: 'postgres' uses: /bin/bash
User: 'mysql' uses: /bin/false
User: 'nobody' uses: /bin/false

User: 'barryp' uses: /bin/bash

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

More Splits
• The pattern and string arguments to split are optional - if

missing, split will split $_ on whitespace, so:

$_ = "this is a test of split";
@line_list = split;
foreach $w (@line_list)
{
print $w, "\n";

}

• will produce as output each word contained within $_ on its
own line

• Check man perlfunc for more details on split

• The join function allows us to create a delimited record:

print join ':', $user, $a, $b, $c, $d, $e, $shell;

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Shifting
• The shift function returns and removes the first element of

the list:

@nums = qw(one two three four five);
$first_num = shift @nums; # $first_num is set to 'one'.
print "@nums\n";

• We can add to the start of a list using the unshift function:
unshift @nums, 'one';

print "@nums\n";

• The following does nothing (except waste valuable processor
cycles):

unshift @nums, (shift @nums);

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Pop and Push
• The pop function operates on the end of the list, returning the

last element as its result:

@nums = qw(one two three four five);
$last_num = pop @nums; # $last_num is set to 'five'.
print "@nums\n";

• The push function (surprise, surprise) appends an element to
the end of a list:

push @nums, 'five';

print "@nums\n";

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Simple List Data Structures
• Using push and pop on any list makes it behave like a
LIFO stack

• The same is also true of using shift and unshift together

• Using push and shift together, or using unshift and
pop together, lets you treat the list as a FIFO queue

• If you use all four together, then lists can behave like double-
ended queues (or deques)

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Splice
• Splicing and dicing of lists is possible with the splice

function, which has the general form:

splice @some_list, $offset, $length, @some_other_list;

• where $offset is a location within @some_list to start
at (remembering that we start counting at zero), $length is
the number of elements to remove, and
@some_other_list is a list to put into @some_list in
place of the elements removed

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Splice Example
• For example, given:

@nums = (1, 2, 3, 4, 5, 6);

@num_words = qw(three four four_and_a_half five);

splice @nums, 2, 3, @num_words;

print "@nums\n";

• will produce as output:

1 2 three four four_and_a_half five 6

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

More on Splice
• If we omit a replacement list, splice simply deletes the

entries from the original list:

@nums = (1, 2, 3, 4, 5, 6);
splice @nums, 2, 3;
print "@nums\n";

• will produce as output:

1 2 6

• If we omit a length value, splice deletes from the offset to
the end of the list

• As you may have guessed, splice returns the items
removed in the form of a list

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Lists and Subroutines
• Now that we know about lists, we can revisit subroutines to

learn how Perl passes arguments into subroutines

• Yes, you guessed it, they get passed as lists

• Fans of 'traditional' programming languages prepare to be
shocked: strange though it may seem, you do not have to
provide named arguments to your subroutines in Perl (Gasp!
Horror! How can this be?!)

• Within your subroutine, the list of arguments passed in (if
any) are available to you in the Perl list variable @_ (which is
called @ARG if we 'use English;')

• This is really important: the values passed in are passed by
reference - changes to the values within the subroutine
change the corresponding values in the calling code

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Call By Value
• To allow you to preserve the contents of the variables within

the calling code, Perl requires you to create variables that
will be local to your subroutine, and that will contain copies
of the passed by reference variables

• We do this with the my function (in combination with
shift):

sub my_copy {
my $copy_one = shift @_; # Note: the @_ is optional;
$copy_one = "one has been changed";
$_[0] = "two has been changed"; # Why zero?

}

$one = "this is one";
$two = "this is two";

my_copy ($one, $two);

print '$one = ' . $one, "\n";

print '$two = ' . $two, "\n";

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

Command Line Arguments
• Our script can receive arguments from the command line (i.e.,

the bash shell)

• If provided, these are available within our Perl scripts as
elements of a list called @ARGV

• This next script takes two arguments: a string to search for,
and a file to search in:

#!/usr/bin/perl -w

$string = $ARGV[0];
$file = $ARGV[1];

open FILE, $file or die "Cannot open $file\n";

while (<FILE>)
{
print if /$string/;

}

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

More on Command Line Arguments
• The previous script was useful, but it gets into trouble if we

feed it more than one file to process

• We already know (from our very first Perl script) that the
while (<>) code will work on multiple files, and rather
than rewrite code to simulate this, we'd like our script to take
advantage of this default behaviour

• But, what do we do with the first argument, which is the
string to search for?

• The solution is surprisingly simple:
#!/usr/bin/perl -w

$string = shift; # We shift the first command-line argument.
while (<>) # We use the default behaviour as is.
{
print if /$string/;

}

Copyright (c) 1999 by Paul Barry, IT Carlow, Kilkenny Road, Carlow, Ireland. All Rights Reserved.

