
PERL LAB 6 - Lists and Hashes

1. Enter the following script into vi, call it coord.pl, run it and
 convince youself that you know what it is doing:

@coord_3D = (100, 200, -200);

print "@coord_3D\n";

($x, $y, $z) = @coord_3D;

print '$x = ' . $x . ', $y = ' . $y . ', $z = ' . $z, "\n";

$x /= 2;
$y /= 2;
$z /= 2;

print '$x = ' . $x . ', $y = ' . $y . ', $z = ' . $z, "\n";

@coord_3D = ($x, $y, $z);
print "@coord_3D\n";

2. Run the following script, call it mytime.pl:

($sec, $min, $hour, $month_day, $month, $year, $week_day, $year_day, $summer_time) = gmtime;
++$month;
$year += 1900; # Look: no Y2K bugs here!
print "The date is: $month_day/$month/$year\n";

3. Run the following script, call it primes.pl:

sub the_first_primes {
@primes = (1, 2, 3, 5, 7, 11, 13, 17, 19, 23);

return wantarray ? @primes : ($#primes+1);
}

@list = the_first_primes;

$scalar = the_first_primes;

print "The subroutine returned the list value: @list\n";
print "The subroutine returned the scalar value: $scalar\n";

4. Run this script, call it bashers.pl, against the /etc/passwd file:

@bash_users = map { m[(^\w+).*/bin/bash$] ; $1 } <>;

print "Bashers on this system are:\n";

foreach $b (@bash_users)
{

print " User = ", $b, "\n" if defined($b);
}

5. Run this script, call it mycp.pl:

sub my_copy {
my $copy_one = shift @_; # Note: the @_ is optional;
$copy_one = "one has been changed";
$_[0] = "two has been changed"; # Why zero?

}

$one = "this is one";
$two = "this is two";

my_copy ($one, $two);

print '$one = ' . $one, "\n";
print '$two = ' . $two, "\n";

6. Run this script, call it myset.pl. Compare the output from the
 script to the LINUX set command:

#!/usr/bin/perl -w

foreach $var (sort keys %ENV)
{

print "$var = $ENV{$var}\n";
}

7. Run the LINUX who command, then run this script, call my mywho.pl,
 and compare the results:

#!/usr/bin/perl -w

%unique = (); # The hash is initially empty.

On the next line, the use of `who` allows Perl to call an
operating system command and have the results delivered as
lined input to the script.

for (`who`)
{

s/\s.*\n//; # Remove unwanted space.
$unique{$_}++; # Update the hash with $_ (current thing).

}

@users = sort keys %unique; # Produce a sorted list.

print "The logged in users are: @users\n";

