Exercises

These exercises are intended to help you consolidate what you have read, and
to get you writing Perl scripts. They are arranged by chapter, so that an exercise
given under Chapter x should only need information provided in Chapters 1
to x, unless the exercise requires you to do some extra research, in which case
the necessary pointers are provided. Questions marked with a dagger () are
simple drill exercises and should not take you more than a few minutes; those
marked with an asterisk (*) are substantial programming projects, which you
might prefer to omit if you have projects of your own to work on. The unmarked
exercises lie in between: they all require some thought and, usually, the writing
of a Perl script. They vary in difficulty but, in general, as the material covered
in the book gets more complex towards the end, so too do the exercises.

There are no best answers to these exercises; if you are happy with some-
thing, and it works, that’s fine. If you can, you should experiment with different
solutions, to get a feel for how you like to use Perl. Be ambitious, do more than
you think you can. Be daring, push the language to its limits if you need to.
But try to have some sort of fun.

Chapter 2.

t2.1. For each of the strings (a)-(e), say which of the patterns (i)-(xii) it matches.
Where there is a match, what would be the values of $MATCH, $1, $2, etc.?
(@) the quick brown fox jumped over the lazy dog
(b) The Sea! The Sea!
(© C.+\s*\1
(d) 9780471975632
(e) C:\DOS\PATH\NAME

EX-1

EX-2 Perl: The Programmer’s Companion

i) /la-z]1/
(i) /Q\W+)/
(ii)) /A\W*/
(iv) /M\w+$/
v) /[M\w+8$1/
(vi) /\d/
(vi)) /C.+)\s*\1/
(viii) /CC.4+)\s*\1)/
(x) /C.\s*((\1)/
(x) /\DOS/
(xi) /\\DOS/
(xii) /\\\DOS/

t2.2. Write down regular expressions to be used to search a file of song titles
that correspond to the following informal queries:

(a) The researcher: ‘I want everything that mentions Jelly Roll. Some-
times it’s spelt as one word, sometimes as two.’

(b) The expert: ‘It’s really called Blind Boy Blues, but you’ll often see it
referred to as Blind Willie’s Blues, or even just as Blind Willie.’

(c) The amnesiac: ‘Errrm...now, let me see...it’s called something wild
something, or wild something something I forget...’

Think about the assumptions you need to make, both about the format
of the data and about the correct interpretation of the natural language
queries.

t2.3. Write down regular expressions that are matched by:
(a) a sentence (something that begins with a capital letter and ends with
a full stop);
(b) any number that is a multiple of 5;
(c) any string whose length is a multiple of 5;

(d) any four digit number that reads the same backwards as forwards
(like 4114);

(e) a number in Roman numerals (can you ensure that it is correctly
formed?);

(f) any ‘word character’ except Q (try to make your regular expression
as short as possible).

(You should be able to think of several sensible regular expressions for
each.)

2.4.

2.5.

12.6.

2.7.

Chapter 3.

3.1.

3.2

3.3.

3.4.

Exercises EX-3

I mention on page 19 that most songs with the word ‘blue’ in their titles
are not blues songs at all. Write a regular expression that is matched by
such titles and excludes the blues songs matched by the pattern given on
that page.

Write a regular expression that is matched by any string that contains
both of the words bTue and green somewhere.

The CCITT changed its name to the ITU. Write a Perl script to update any
text file that refers to CCITT documents. Would you use this script to
update files without checking the output by hand? (How about the file
containing the text of these exercises?)

Until recently all UK phone numbers began with a 0 (zero) followed by the
area dialling code, then the number. A couple of years ago an extra digit
was added to accommodate growing demand for numbers; all existing
numbers had a 1 inserted after the 0, since, by then no numbers started
with 01. Write a Perl script that scans a file and updates any old-style
numbers, but leaves new-style ones alone. (Don’t worry about things like
0800 numbers, unless you want to and know all the details.)

What does the following script produce as its output? (Answer before you
run it.)

$s1 = ’100°;
$s2 = ’$1007;

print "$s1\n";

print "$s2\n";

print "\$s1\n";

print "\Q$s2\E\n";
print "\Q\Q$s2\E\E\n";

Write a Perl script to print any lines containing both of the words bTue and
green somewhere, using an operation introduced in this chapter to pro-
duce a much simpler solution than the regular expression in exercise 2.5.

Write a Perl script to find and print the longest word in a text file.
The excessive use of quoted text in mail messages and news postings is

rife. Write a Perl script that prints the percentage of lines in its input that
begin with a > character.

EX-4 Perl: The Programmer’s Companion

3.5.

3.6.

3.7.

Chapter 4.

4.1.

t4.2.

Many programmers use variable names made up of several words. One
convention is to write names entirely in lower-case letters, with under-
line characters separating words, as in a_long_variable_name. An al-
ternative, which appears to be growing in popularity, uses mixed case,
with each word beginning with an upper-case letter, except that the whole
variable name always begins with a lower-case one (usually to distinguish
variables from type names) as in aLongVariabTeName. Write a Perl script
to convert variable names from the first form to the second. (Or, if you
prefer, vice versa.)

Write a Perl script that computes the average word length (in characters)
and the average sentence length (in words) of a text file.

Write a Perl script that writes accidental concrete poetry by extracting
every fifth word from a text file and arranging them in lines of roughly
equal length, or some other visually appealing pattern.

Write a Perl script whose input consists of a set of URLs, one per line,
where the firstis a complete URL and the remainder are partial, and whose
output consists of the full URLs obtained by resolving the partial ones
relative to the first. (See The HTML Sourcebook if you are unsure about
partial URLs and how they are resolved.)

Consider the fashionable subject of JavaBeans.® Their only feature of
interest for the present exercise is that a rigid convention is used to clas-
sify the names that programmers define when they construct a JavaBean.
If PropName is what they call a property name, then there will be some
methods associated with it. In particular, there will be a method whose
name is of the form getPropName, which is called a get method for Prop-
Name. Similarly, setPropName is a set method for PropName. If Prop-
Name is the name of a Boolean property, though, its get method is called
isPropName, and is a test method. If EvName is something called an
event name, then addEvNamel i stener is a listener adding method, while
removeEvNamelistener is a listener removing method. Property and
event names always begin with an upper-case letter. Write a Perl script
that takes a file of method names and classifies them, identifying the
property and event names. Your script should produce output like the
following:

addTimerListener : Tistener adder for Timer event
setFileName : set method for FileName property
isFileOpen : test method for Boolean property FileOpen

6It doesn’t actually matter if you have never heard of JavaBeans.

4.3.

4.4,

4.5.

Chapter 5.

5.1.

5.2.

5.3.

5.4.

5.5.

5.6.

Exercises EX-5

Re-do the previous exercise by writing individual subroutines for each cat-
egory of method name, which return true of false depending on whether
$ARG belongs to the corresponding category.

The syntax diagram compiler in this chapter just gives up and dies when
it finds an error in its input. Real compilers usually try to recover from
errors and parse the remaining input so that they find as many errors as
possible on a single run. Modify the compiler so that it attempts some
error recovery. (One way to do this is by using eval and exceptions, but
it isn’t the only way.)

Perl does not have a switch or case statement, unlike most contempo-
rary languages. Investigate different ways of simulating such a statement
using the various control flow structures introduced in this chapter.

The rotl13 encryption method described in Chapter 2 is a special case of
amore general encryption method, sometimes called a Caesarean cypher,
in which letters are coded by moving them an arbitrary number n through
the alphabet; for rotl13, n = 13. The key to the cypher is the value of n.
The trouble is that messages encrypted this way are very easy to crack,
provided you know what the most frequent letter in them is. For most
English texts, it is safe to assume that the most frequently occurring letter
is e. Write a Perl script that reads an encrypted text, finds the key, and
prints the original message.

Write a Perl script to turn text into Morse code (representing dots and
dashes with suitable characters). You can find a table of Morse codes at
http://www.cris.com/~Gsraven/codes.html.

Imention on page 104 that push, pop, shift, and unshift can be defined
in terms of spTice. Do it.

Write a subroutine that returns a string which is the representation of its
first numerical argument to the base of its second. For example, if you
give it the arguments 47 and 12 it will return the string 3B. Assume for
simplicity that the base is at most 16. Check the validity of the arguments.

Word order in Latin is not very important (or so they told me once). Write
a Perl script to generate all the different permutations of the words in the
sentence: mens sana in corpore sano.

Devise arguments to the equal_arrays subroutine that will fool the tests
on pages 107-108. Can you make the checks foolproof?

EX-6 Perl: The Programmer’s Companion

15.7.

5.8.

5.9.

5.10.

5.11.

Chapter 6.

16.1.

6.2.

Write a subroutine to sort a list of strings in increasing order of their
length.

Write a Perl script to sort the video clips database used in this chapter in
increasing order of duration. You can assume it is safe to read the whole
database into memory at once.

A Perl script written to the specification in exercise 3.5 will sometimes pro-
duce undesired results: for example, a flag called is_dos_compatible
will be turned into isDosCompatible, instead of isDOSCompatible,
which is more likely to be what would be required. Adapt your solution
to exercise 3.5 so that sub-words belonging to a set which you specify are
translated specially.

If you want to be sure that your files can be read on any computer system,
one of the things you have to ensure is that their names are legal under
MS-DOS: names must be made up entirely of upper-case letters, digits and
underlines and be in ‘8.3’ form, that is, they must consist of a root with
at most eight characters, optionally followed by a dot and an extension of
at most three characters. Write a Perl script that takes a file of arbitrary
file names, up to 255 characters in total length, mixed case, including
non-alphanumeric characters, and generates unique MS-DOS legal names
from them, preserving as much as possible of the original name (for ex-
ample, you might truncate names and extensions or throw away vowels,
but don’t just call the files AAAAAAAA. AAA etc.). Note the word ‘unique’
in the previous sentence. Your script should print a table showing the
correspondence between the old names and the new ones.

Extend your program for exercise 4.2 to identify and classify all the prop-
erty and event names in the data according to the following rules: a prop-
erty is read/write if it has a get and a set method; read/write Boolean if it
has a get and a test method; read-only if it has only get or test methods;
a listener if it has a listener adder; probably malformed if it only has a
set method or a listener remover, or if it has get, set or test and a listener
adder or remover. Make no assumptions about the order in which the
method names appear in the data file.

Write a Perl script that throws away any values for the DATA filehandle
included at the end of another Perl script. (Use a line range.)

Write a Perl script that prints the longest paragraph (measured in words)
in a document.

6.3.

*6.4.

6.5.

6.6.

Exercises EX-7

Although you will often see it said that NTSC video has a frame rate of
30fps, this is not actually true: for obsolete technical reasons, NTSC video
is broadcast at a rate of 29.97 frames per second. Since there is not
an exact number of frames in a second, SMPTE timecode, which must
use exactly 30, drifts with respect to the elapsed time. The expedient
adopted to work round this is called drop frame timecode, in which frames
00:00 and 00:01 are omitted at the start of every minute except the tenth.
(It's a bit like a leap year.) So your count jumps from, say, 00:59:29 to
1:00:02. Adapt the script on pages 133-134 to add extra columns for
drop frame timecodes, changing the layout appropriately to arrange all
the information neatly on the page.

As you probably know, the GIF image file format can accommodate mul-
tiple images in a single file; this is the basis of GIF animation, which is
currently enjoying a vogue on the World-Wide Web. Write a Perl script
that examines a GIF file and finds out how many frames it contains. To
do this, you will need to read the GIF format specification. It is available at
ftp://ftp.ncsa.uiuc.edu/misc/file.formats/graphics.formats/gif89a.doc,
and is also described in The Encyclopedia of Graphics File Formats, by
James D. Murray and William vanRyper (O’Reilly and Associates, 2nd ed.,
1996).

Adapt your answer to exercise 5.10 to produce a script that scans a di-
rectory and changes the names of all the files in it to conform to MS-DOS
restrictions. Write a log file recording the changes in a suitable format
for subsequently querying for the original name or reversing the renam-
ing process.

Consider the sequence of numbered pictures produced as the output of
the script on page 144. Suppose that it turns out that you want to make
a movie out of these pictures in reverse order (stranger things have hap-
pened). It is possible to reverse movies, but sometimes it is quicker just
to reverse the sequence numbering of the individual pictures.

(a) Assuming that the pictures have consecutive three digit extensions,
starting at .001, write a Perl script that reverses their order; i.e. if
there are 48 pictures, they will be called something like frame.001
to frame.048; your script should rename the original frame.001 as
frame.048, frame.002 as frame.047, and so on, until the original
frame.048 becomes the new frame.001. (Take care not to...but I
don’t have to tell you that, do I?)

(b) Instead of assuming that the pictures have consecutive three digit
extensions, starting at .001, add code to find out how long the ex-
tensions are and which is the starting number, and to verify that they
are indeed consecutive. (What will you do if they are not?) Modify
the reversal code so that it will correctly rename the files consistently

EX-8 Perl: The Programmer’s Companion

with their original numbering scheme. (For example, if the original
extensions ran from .07 to .45, so should the new ones, but with
the pictures in reverse order.)

Chapter 7.

Most of the exercises for this chapter share a common theme of data structures.
You may find them difficult if you are not comfortable with structures such as
trees and directed graphs. A good book, for example, Mitchell L. Model’s Data
Structures, Data Abstraction (for C+ programmers), or Robert L. Kruse et al’s
Data Structures and Program Design in C (for C programmers) may help. Many
other books are available on this subject, if neither C nor G~ is your preferred
programming language. (Don’t forget Donald Knuth’s Art of Computer Pro-
gramming.)

t7.1. Suppose the r-value of $hr is a reference to a hash and that of $ar is a
reference to an array. Write an expression that evaluates to the value in
%$hr associated with the key that is equal to the fourth element of the
list @$ar.

t7.2. Suppose $a contains a reference to an array. Consider the following (con-
trived) sequence of assignments:

$words = [qw(richard of york gave battle in vain)];
$%$a[0] = \$words;
$b = \%a;

Draw a diagram showing the 1- and r-values of the variables $words, $a
and $b and the relationship between them. Which, if any, of the following
is equal to richard? (Try to answer without running a Perl script.)

(@) $%$af[0]->[0]

(b) $${%a[0]}[0]

() ${$%a[0]}->[0]

(d) $$$a[0]->[0]

(e) $${$%a[0]}[0]

(f) $${$$$b[0]3[0]

7.3. Suppose a data file contains rural bus timetable information in the follow-

ing format: the first line contains the names of each village on the route,
separated by colons; subsequent lines contain the times, using a 24 hour

clock, at which the bus should arrive at each village, also separated by
colons.

Exercises EX-9

(a) Write a Perl script that takes a pair of village names as command line
arguments, and, using such a data file, produces a table with one
column for each of the two, showing the times of buses travelling
between them.

(b) Write another script that reads such a file and produces a timetable
with one row for each village showing the times each bus calls there.

Your scripts should probably validate their input.

*7.4. Consider an input file that records information about the links in a Web

*7.5.

site. It has the following structure:

(base URL,) ->
(URL1,1)
(URLy)
(URLy3)

(base URL;) ->
(URL3,)
(URLy)
(URL>3)

and so on. Each (base URL;) identifies a page on the site; the (URL; j)s are
URLs found in links on that page. (If you want to make this exercise even
more interesting, you can suppose that some of the (URL; ;)s are partial
URLs.)

Write a Perl script that prompts the user for pairs of URLs and determines,
using the data in such a file, whether or not it is possible to reach the
second URL from the first, via zero or more clicks on links.

A file maintained by an international conservation organization contains
data concerning the captive breeding of an endangered species, let us say
the three-toed Nandi bear. Each line of the file consists of four items,
separated by colons, the first being the name of a bear born in captivity,
the next its sex, the last two the names of its parents. You can assume
that the zoos taking part in the captive breeding programme ensure that
each bear’s name is unique.

Write a Perl script that reads the data in such a file, and then, for each bear
that has not yet had any offspring, produces a list of potential mates. To
avoid in-breeding, an animal may only be paired with another if they are
less closely related than first cousins (i.e. they must not have the same
grandparents).

EX-10 Perl: The Programmer’s Companion

*7.6.

7.7.

Chapter 8.

As you may be starting to observe, one of the problems in doing exercises
like these is finding enough data to test your solutions. Write a data
generator in Perl. It should take as its input a description of the desired
data format, using a data description language of your devising (regular
expressions might provide a good starting point for the language design),
and produce a set of random data conforming to that format. (I have
included this exercise here because one potential approach is to parse
the data description and build a data structure that you can use to direct
the generation. You may prefer to use a lower-tech approach, though.)

(a) Write a Perl script that takes a directory name as its argument, cre-
ates a new sub-directory called executables within it, then scans
the directory and all its sub-directories looking for executables and
moves them into the new sub-directory. (Look up mkdir in the Perl
on-line documentation to see how to create a sub-directory.) Be pre-
pared for identically named executables.

(b) Write a Perl script that takes a directory name as its argument, cre-
ates a new sub-directory called graphics within it, then scans the
directory and all its sub-directories looking for graphic files (those
with extensions belonging to some set you should specify that is
appropriate for your environment) and moves them into the new
sub-directory.

(c) If you have not already done so, write a higher-order function that
captures the common behaviour of the scripts you have just written,
and re-implement parts (a) and (b) using it. If you can, design your
higher-order function so that it can also be used to implement the
directory traversals on pages 169-170 as well.

Object-oriented programming is as much about design as it is about language
features. If you are not already familiar with object-oriented methods, you will
find these exercises more difficult than if you are. In either case, you may prefer
to return to them after reading Chapter 9.

8.1.

8.2.

The file test operations described in pages 141-143 are very useful but
their syntax is unlike anything else in Perl. Define a class FileInfo, with
a constructor that takes the name of a file and associates it with the ob-
ject, and methods corresponding to each of the file test operators, which
return the value that operator would return for the file associated with
the object used to call the method.

A collection of numbered pictures, such as we considered in the previous
chapter, might profitably be considered as an object belonging to a class

8.3.

8.4.

8.5.

Exercises EX-11

NumberedPictureSet, say. Design and implement such a class, with a
constructor that takes as its argument the pathname of a directory in
which the collection resides, and methods to perform the renumbering
operation described in the text and in exercise 6.6.

Re-work your solution to one of the first three exercises from the previous
chapter in an object-oriented style.

For the purpose of taxation, the government of Freedonia classifies motor
vehicles into three broad categories: public service vehicles, goods vehi-
cles, and private cars. Emergency vehicles are considered a special sub-
category of public service vehicles; goods vehicles are divided into light
(vans) and heavy (lorries or trucks). Every vehicle has a unique registra-
tion number, and the government records the name of all vehicle owners;
for goods vehicles, a goods operator’s licence number is also recorded,
whereas for public service vehicles, the government department respon-
sible for them is recorded.

Tax is assessed as follows: public service vehicles play a flat rate (this is
required for inter-departmental accounting purposes), except for emer-
gency vehicles, which are exempt. All goods vehicles pay a rate propor-
tional to their weight, but light goods vehicles pay a supplement if they
have more than two windows. Private cars all pay the same amount of
tax, but cars with engines smaller than 1100cc receive a rebate if they are
more than three years old.

Design a collection of classes that is suitable for modelling this scenario,
and implement them in Perl. Allow for the possibility that the rates of tax
might be changed at budget time. Write a driver program to simulate the
recording of data about registered vehicles and the collection of taxes.

Consider the following scenario: every person (let us suppose) has a name
and an address; some people are students, and also have a university or
college to which they belong; some people are musicians, and can play
one or more instruments. If, for some reason, we wished to model this
situation in Perl, we could define classes Person, Student, and Musician,
with the latter two setting @ISA = (’Person’). The constructors could
be written in an obvious way, so that the name and address were passed
to Person->new, which stored them in a hash and returned a blessed
reference to it. The constructor Student->new would take the student’s
name, address and college, call SUPER->new with the name and address,
then add the college, in the manner we have seen; Mus1ician would deal
with name, address and instrument in a similar way.

Now consider music students. A music student is a student, and also a
musician (to the extent of playing an instrument). The natural way to add
music students to your model is by using multiple inheritance: define a
class MusicStudent,which sets @ISA = qw(Student Musician). Write

EX-12 Perl: The Programmer’s Companion

Chapter 9.

19.1.

9.2.

9.3.

9.4.

9.5.

9.6.

a definition of the constructor for this new class. (Do not modify the con-
structors of the other classes.) What can you say about the maintainability
and re-usability of the classes in this hierarchy?

Can you re-design the hierarchy so that it only uses single inheritance,
but still accurately reflects the semantics of the scenario?

Use Benchmark to compare the relative efficiencies of the built-in list ma-
nipulation functions, and those you defined in exercise 5.3.

Use Benchmark to determine whether there is any significant speed dif-
ference between the scripts for computing a table of squares given at the
bottom of page 88 (using for) and the top of page 89 (using foreach).
Devise and carry out further experiments to investigate the relative effi-
ciency of these two forms of loops for a variety of tasks and number of
loop iterations.

The -M file test operator tells you how many days ago a file was last mod-
ified. Using this operator and Date: :Manip, write a Perl script that tells
you the date on which a file was last modified.

Use a tied hash to store the data on vehicle registrations for your solution
to exercise 8.4, in the following way:

(a) Generate a unique identifier every time an object is created, and
store a flattened version of its data in the tied hash. Add store
and retrieve methods and use them as necessary to write data to
and read it from disk.

(b) Make the reading and writing transparent by modifying your other
methods as necessary so that data is automatically read from disk
when it is needed, and written whenever it changes.

Implement a simple system to be used by a dentist to generate reminders
when patients are due for a check-up. You will need a database to record
patients’ names and addresses together with the date of their last visit, a
simple data entry program to insert and update information, and a script
to be run once a week to generate reminders for patients who have not
been to the dentist in the preceding six months. Perhaps you should
generate more urgent reminders for patients who have not been for over
a year.

In a complex computer set-up, with many hard disks and removable me-
dia of varying size and speed, it may be necessary to move files around
between disks, with the not inconceivable result that their origins get

9.7.

*9.8.

Chapter 10.

10.1.

10.2.

Exercises EX-13

forgotten — especially if more than one person has access to the system.
Design and implement in Perl a system for managing files on multiple per-
manent and removable disks, that maintains a history of every file known
to it. The system should provide a means of moving and renaming files (a
simple command line interface, such as that described in Chapter 4 will
be adequate), and use a database to record every location and the date
of any changes, so that it can answer questions such as ‘Where is the file
that I put on the cartridge Scratch Zip II on 13th April?’ (You don’t
need to provide a natural language interface unless you really want to.)
Your system need only keep track of changes made through its interface.

Take some time to browse among the modules in CPAN: the full list can be
found athttp://www.perl.com/CPAN/modules/00modlist.long.html.
Choose a module that is related to one of your interests, examine its doc-
umentation to discover how it is used, and evaluate its usefulness. (In
other words, play with it.)

Add a graphical user interface to the data entry program you wrote for
exercise 9.5. This will be easiest if you are using the X windows system,
since you can use the Perl/Tk modules (although you could try the X11:*
modules if you prefer to work directly with X). For Windows or MacOS
systems, you should be able to find system-dependent modules for con-
structing interfaces with Perl on those platforms.

A characteristic problem of being a freelance Web designer, Perl coder, or
graphic artist is finding clients; potential clients, on the other hand, some-
times have trouble finding competent freelancers. Implement a World-
Wide Web-based system to help. You will need to maintain a database of
freelance workers, recording at least their contact details, areas of exper-
tise, and consultancy rates. You will also need a Web page, with a form
to elicit these details from people who want to sign up with your service,
and another with a form to be filled in by potential clients with their re-
quirements and the rate they are willing to pay. Finally, you will need a
database search routine, to find freelancers with the required skills will-
ing to work for the offered rate of pay. All these components must be
tied together via CGI.

The speed of Internet connections varies widely; pictures that somebody
with an ISDN connection might download casually can take a very long
time for somebody with a 14.4kbps modem. One response is to provide
different versions of your picture to suit different connections.

(a) Write a CGI script that asks a user what speed their connection is,
and sends them one of several versions of a file, depending on the
answer.

EX-14 Perl: The Programmer’s Companion

*10.3.

Chapter 11.

11.1.

Epilogue

(b) What you really want to do is find out the connection speed when
the user arrives at your site, and then choose appropriate ver-
sions of all graphics, sound and video files to send them. Unfor-
tunately, since HTTP creates a new connection for every request,
it does not give you any way of remembering information about
a client between requests. This is why ‘cookies’ were invented.
A cookie is a small amount of data, with its own name, that you
can associate with a Web page or site, which can be stored by
a Web browser and retrieved by a CGI script. A full specifica-
tion of cookies and their interaction with HTTP can be found at
http://home.netscape.com/newsref/std/cookie spec.html;
the documentation accompanying Lincoln Stein’s CGI module de-
scribes how cookies can be manipulated by CGI scripts using that
module.” Modify your solution to part (a) so that the information
about line speed need only be elicited once, and will be remembered
for the duration of a session.

The widely used POP3 mail protocol requires mail clients to download
messages from a server to be read, even if they are the most egregious
junk mail (‘MAK $$$$ NOW!!!!'’). The newer IMAP protocol makes it pos-
sible to examine mail on the server and delete it without downloading,
but not all ISPs have yet implemented IMAP. An interim solution is to
provide a Web-based interface to the POP3 server, allowing you to con-
nect to a Web page, give your mail address and POP3 password, and then
have the headers of any waiting mail messages displayed to you. You can
then choose to read or delete selected messages from within your Web
browser. Using the CGI and appropriate Mail: :* modules, design and
implement such an interface. (Do not concern yourself with the security
and privacy aspects that attend real implementations of such interfaces.)

Re-do all the above exercises in G~ or Java.

Write a Perl script that examines the dialogue of each of the characters and,
using stylometric measures of your own devising, compares it with a large
collection of writings on programming methodology in order to discover the
true identities of the participants. (The waiter may prove especially tricky.)

7 Although the documentation refers exclusively to Netscape cookies, MS Internet Explorer 3.0
and higher can also store and retrieve cookies.

