
About Files

Input, Output and Other Things

I/O: Input and Output

●

● The standard streams: STDIN, STDOUT and
STDERR

my $data = <STDIN>;

my $data = <>;

print STDOUT $data;

print $data;

print STDERR "Something terrible has happened ... aborting.\n";

warn "Something terrible has happened ... aborting.\n";

STDIN, STDOUT and STDERR

This is the first disk-file, line 1.
This is the first disk-file, line 2.
This is the first disk-file, line 3.
This is the first disk-file, line 4.
This is the first disk-file, line 5.

This is the second disk-file, line 1.
This is the second disk-file, line 2.
This is the second disk-file, line 3.

Reading Files

This is the first disk-file, line 1.
This is the second disk-file, line 1.
This is the first disk-file, line 2.
This is the second disk-file, line 2.
This is the first disk-file, line 3.
This is the second disk-file, line 3.
This is the first disk-file, line 4.
This is the first disk-file, line 5.

Merging Files

#! /usr/bin/perl -w

determine_args - print out the names of the disk-files named
on the command-line.

if ($#ARGV != 1)
{
 warn "Please supply the names of two disk-files on the
 command-line.\n";
 exit;
}

my ($first_filename, $second_filename) = @ARGV;

print "first disk-file name is: $first_filename\n";
print "second disk-file name is: $second_filename\n";

Determining the disk-file names

my $first_filename = $ARGV[0];
my $second_filename = $ARGV[1];

my $first_filename = shift;
my $second_filename = shift;

$ perl determine_args first_file.txt second_file.txt

first disk-file name is: first_file.txt
second disk-file name is: second_file.txt

The Default Argument Array

#! /usr/bin/perl -w

check_args - check that the disk-files named
on the command-line exist.

if ($#ARGV != 1)
{
 die "Please supply the names of two disk-files on
 the command-line.\n";
}

my ($first_filename, $second_filename) = @ARGV;

unless (-e $first_filename && -f $first_filename && -r $first_filename)
{
 die "$first_filename cannot be accessed. Does it exist?\n";
}
unless (-e $second_filename && -f $second_filename && -r $second_filename)
{
 die "$second_filename cannot be accessed. Does it exist?\n";
}

Opening named disk-files

open FIRSTFILE, "$first_filename";
open SECONDFILE, "$second_filename";

open FIRSTFILE, "<$first_filename";
open SECONDFILE, "<$second_filename";

open FIRSTFILE, "$first_filename"
 or die "Could not open $first_filename. Aborting.\n";
open SECONDFILE, "$second_filename"
 or die "Could not open $second_filename. Aborting.\n";

close FIRSTFILE;
close SECONDFILE;

The check_args program, cont.

Maxim 6.1

Open a disk-file for as long as needed, but no
longer

Maxim 6.2

If you open a disk-file, be sure to close it later.

my ($linefromfirst, $linefromsecond);

$linefromfirst = <FIRSTFILE>;
$linefromsecond = <SECONDFILE>;

Reading a line from each of the
disk-files

#! /usr/bin/perl -w

merge2files - merge the two disk-files named on the command-line.

if ($#ARGV != 1)
{
 die "Please supply the names of two disk-files on
 the command-line.\n";
}

my ($first_filename, $second_filename) = @ARGV;

unless (-e $first_filename && -f $first_filename && -r $first_filename)
{
 die "$first_filename cannot be accessed. Does it exist?\n";
}

Putting it all together

unless (-e $second_filename && -f $second_filename && -r $second_filename)
{
 die "$second_filename cannot be accessed. Does it exist?\n";
}

open FIRSTFILE, "$first_filename"
 or die "Could not open $first_filename. Aborting.\n";
open SECONDFILE, "$second_filename"
 or die "Could not open $second_filename. Aborting.\n";

my ($linefromfirst, $linefromsecond);

while ($linefromfirst = <FIRSTFILE>)
{
 $linefromsecond = <SECONDFILE>;

 print $linefromfirst;
 print $linefromsecond;
}

close FIRSTFILE;
close SECONDFILE;

The merge2files program, cont.

$ chmod +x merge2files

$./merge2files first_file.txt second_file.txt

This is the first disk-file, line 1.
This is the second disk-file, line 1.
This is the first disk-file, line 2.
This is the second disk-file, line 2.
This is the first disk-file, line 3.
This is the second disk-file, line 3.
This is the first disk-file, line 4.
Use of uninitialized value in print at merge2files line 35, <SECONDFILE> line 3.
Use of uninitialized value in print at merge2files line 35, <SECONDFILE> line 3.
This is the first disk-file, line 5.
Use of uninitialized value in print at merge2files line 35, <SECONDFILE> line 3.
Use of uninitialized value in print at merge2files line 35, <SECONDFILE> line 3.

Running merge2files ...

$./merge2files second_file.txt first_file.txt

This is the second disk-file, line 1.
This is the first disk-file, line 1.
This is the second disk-file, line 2.
This is the first disk-file, line 2.
This is the second disk-file, line 3.
This is the first disk-file, line 3.

Running merge2files again ...

if (!eof(SECONDFILE))
{
 $linefromsecond = <SECONDFILE>;
 print $linefromsecond;
}

Creating merge2files_v2

$./merge2files_v2 first_file.txt second_file.txt

This is the first disk-file, line 1.
This is the second disk-file, line 1.
This is the first disk-file, line 2.
This is the second disk-file, line 2.
This is the first disk-file, line 3.
This is the second disk-file, line 3.
This is the first disk-file, line 4.
This is the first disk-file, line 5.

Running merge2files_v2 ...

This is the second disk-file, line 1.
This is the first disk-file, line 1.
This is the second disk-file, line 2.
This is the first disk-file, line 2.
This is the second disk-file, line 3.
This is the first disk-file, line 3.

Running merge2files_v2 again ...

#! /usr/bin/perl -w

merge2files_v3 - third version of merge2files: merge the disk-files
named on the command-line (with some help from eof and defined).
Make sure all lines are read from both disk-files.

if ($#ARGV != 1)
{
 die "Please supply the names of two disk-files on
 the command-line.\n";
}

my ($first_filename, $second_filename) = @ARGV;

unless (-e $first_filename && -f $first_filename && -r $first_filename)
{
 die "$first_filename cannot be accessed. Does it exist?\n";
}

Creating merge2files_v3

unless (-e $second_filename && -f $second_filename && -r $second_filename)
{
 die "$second_filename cannot be accessed. Does it exist?\n";
}

open FIRSTFILE, "$first_filename"
 or die "Could not open $first_filename. Aborting.\n";

open SECONDFILE, "$second_filename"
 or die "Could not open $second_filename. Aborting.\n";

my ($linefromfirst, $linefromsecond);

The merge2files_v3 program,
cont.

while ($linefromfirst = <FIRSTFILE>)
{
 print $linefromfirst;
 if (!eof(SECONDFILE))
 {
 $linefromsecond = <SECONDFILE>;
 print $linefromsecond;
 }
}

while (!eof(SECONDFILE))
{
 $linefromsecond = <SECONDFILE>;
 print $linefromsecond;
}

close FIRSTFILE;
close SECONDFILE;

The merge2files_v3 program,
cont.

@entire_file = <>;

Slurping

#! /usr/bin/perl -w

slurper - a program which demonstrates disk-file "slurping".

use lib "$ENV{'HOME'}/bbp/";
use UsefulUtils qw(drawline);

open FIRSTSLURPFILE, "first_file.txt"
 or die "Could not open first slurp disk-file. Aborting.\n";
open SECONDSLURPFILE, "second_file.txt"
 or die "Could not open second slurp disk-file. Aborting.\n";

my @linesfromfirst = <FIRSTSLURPFILE>;
my @linesfromsecond = <SECONDSLURPFILE>;

print drawline(Count => 40), "\n";
print @linesfromfirst;
print drawline(Count => 40), "\n";
print @linesfromsecond;
print drawline(Count => 40), "\n";

close FIRSTSLURPFILE;
close SECONDSLURPFILE;

Slurping example

--
This is the first disk-file, line 1.
This is the first disk-file, line 2.
This is the first disk-file, line 3.
This is the first disk-file, line 4.
This is the first disk-file, line 5.
--
This is the second disk-file, line 1.
This is the second disk-file, line 2.
This is the second disk-file, line 3.
--

Results from slurper ...

my $file_to_open = "errors.log";

...

open(LOGFILE, ">$file_to_open")
 or die "Could not write to/create errors log disk-file.\n";

open(LOGFILE, ">>$file_to_open")
 or die "Could not append to/create errors log disk-file.\n";

print LOGFILE "Error: something terrible has happened.\n";

Writing Files

$./merge2files first_file.txt second_file.txt > merge.out

$./merge2files first_file.txt second_file.txt >> merge.out

$./merge2files first_file.txt second_file.txt > merge.out 2> merge.err

$./merge2files first_file.txt second_file.txt >> merge.out 2>> merge.err

Redirecting output

my $sequence = "TTATTATGTT GCTCAGTTCT GACCTCTTAA CTATGCGGTA";

print "The sequence is: $sequence\n";
print 'The sequence is: $sequence\n';

The sequence is: TTATTATGTT GCTCAGTTCT GACCTCTTAA CTATGCGGTA
The sequence is: $sequence\n

Variable interpolation

my $dna = "ATGTGCGGTATTGCTGACCTCTTA\n";

my $last = chop $dna;

$dna is now "ATGTGCGGTATTGCTGACCTCTTA";

my $next = chop $dna;

$dna is now "ATGTGCGGTATTGCTGACCTCTT";

my $dna = "ATGTGCGGTATTGCTGACCTCTTA\n";

my $last = chomp $dna;

$dna is now "ATGTGCGGTATTGCTGACCTCTTA";

my $next = chomp $dna;

$dna is still "ATGTGCGGTATTGCTGACCTCTTA";

Chopping and chomping

Where To From Here

