Perl Grabbag

Some useful bits'n'pieces that every Perl
programmer should know

Strictness

#! [usr/bin/perl -w

bestrict - denonstrating the effect of strictness.
use strict;

$nessage = "This is the nessage.\n";

print $nessage;

Results from bstrict ...

d obal synbol "$nmessage" requires explicit package nane at bestrict line 7.
d obal synbol "$nmessage" requires explicit package nane at bestrict line 9.
Executi on of bestrict aborted due to conpilation errors.

I Using my To Fix bestrict

I my $nessage = "This is the nessage.\n";

Maxim 8.1

Unless you have a really good reason not to,
always switch on strictness at the top of your
program

Perl One-Liners

#! [usr/bin/perl -w

$ perl -e 'use Exanpl eModul €'

$ perl -e "print "Hello froma Perl

$ perl -e "printf "9%0. 2f\ n",

$ perldoc

$ perldoc

-f printf

-f sprintf

30000 *

one-liner.\n";'

.12

Perl One-Liners: Equivalents

$ perl -ne '"print if /ctgaatagcc/;' enbl.data

while (<>)
{

}

print if /ctgaatagcc/;

$ grep 'ctgaatagcc' enbl.data

Perl One-Liners: More Options

$ perl -npe 'last if /\d{4}$/;' enbl.data

while (<>)
{
last if /\d{4}%/;
}
conti nue {
print $;
}

$ grep -v '[0123456789] [0123456789] [0123456789] [0123456789] $' enbl . dat a

Running Other Programs
From per|

#!' [usr/bin/perl -w

pi nvoke - denonstrating the invocation of other prograns
from Perl .

use strict;

ny $result = system("ls -I p*");

print "The result of the systemcall was as follows:\n$result\n";
$result = "Is -1 p*;

print "The result of the backticks call was as follows:\n$result\n";
$result = gx/Is -1 p*/;

print "The result of the qx// call was as follows:\n$result\n";

Results from pinvoke ...

“TW-TWT--
“TW-TWT--
“TW-TWT--
The result
0

The result
“TW-TWT--
“TW-TWT--
“TW-TWT--

The result
“TW-TWT--
“TW-TWT--
“TW-TWT--

1 barryp barryp 403 Aug 16 16: 48 pi nvoke

1 barryp barryp 145 Aug 7 12: 36 prepare_enbl

1 barryp barryp 422 Jul 22 15:10 private_scope
of the systemcall was as foll ows:

of the backticks call was as follows:

1 barryp barryp 403 Aug 16 16: 48 pi nvoke

1 barryp barryp 145 Aug 7 12: 36 prepare_enbl

1 barryp barryp 422 Jul 22 15:10 private_scope

of the gx// call was as foll ows:

1 barryp barryp 403 Aug 16 16: 48 pi nvoke

1 barryp barryp 145 Aug 7 12: 36 prepare_enbl

1 barryp barryp 422 Jul 22 15:10 private_scope

Recovering From Errors

my $first_filenanme = "itdoesnotexist.txt";

open FIRSTFILE, "$first _fil enane"
or die "Could not open $first filenanme. Aborting.\n";

eval {
ny $first_filename = "itdoesnotexist.txt";

open FIRSTFILE, "$first _fil enane”
or die "Could not open $first filenanme. Aborting.\n";

¥
if ($@)
{

print "Calling eval produced this nessage: $@;
}

Maxim 8.2

Use eval to protect potentially erroneous code

Sorting

#!' [usr/bin/perl -w
sortexanples - how Perl's in-built sort subroutine works.

use strict;

ny @equences = gW gctacataat attgttttta aattatattc cgatgcttgg);
print "Before sorting:\n\t-> @equences\n";

nmy @orted = sort @equences;
ny @eversed = sort { $b cnp $a } @equences;
nmy @l so reversed = reverse sort @equences;

print "Sorted order (default):\n\t-> @orted\n";
print "Reversed order (using sort { \$b cnp \$a }):\n\t-> @eversed\n";
print "Reversed order (using reverse sort):\n\t-> @l so_reversed\n";

Results from sortexamples ...

Bef ore sorti ng:

-> gctacataat attgttttta aattatattc cgatgcttgg
Sorted order (default):

-> aattatattc attgttttta cgatgcttgg gctacat aat
Reversed order (using sort { $b cnp $a }):

-> gctacataat cgatgcttgg attgttttta aattatattc
Reversed order (using reverse sort):

-> gctacataat cgatgcttgg attgttttta aattatattc

Another Sorting Example

ny @hronosones = gw 17 5 13 21 1 2 22 15);
print "Before sorting:\n\t-> @hronpbsones\n";
@orted = sort { $a <=> $b } @hronpsones;

@eversed = sort { $b <=> $a } @hronosones;

print "Sorted order (using sort { \$a <=> \$b }):\n\t-> @orted\n";
print "Reversed order (using sort { \$b <=>\%a }):\n\t-> @eversed\n";

And Its results ...

Bef ore sorti ng:
-> 17513 21 1 2 22 15

Sorted order (using sort { $a <=> $b }):
->1 25 13 15 17 21 22

Reversed order (using sort { $b <=> %$a }):
-> 22 21 17 15 13 52 1

The sortfile Program

#! [usr/bin/perl -w

sortfile - sort the lines in any file.
use strict,;

ny @he file;

while (<>)

{
chonp;

push @he file, $_;
}

ny @orted file = sort @he file;

foreach ny $line (@orted file)
{

}

print "$line\n";

Results from sortfile ...

Zap! Zooml Bang! Bani

Bat man, | ook out!

Robi n, behi nd you!
Aaaaah, it's the R ddl er!

$ perl sortfile sort.data
Aaaaah, 1t's the R ddl er!
Bat man, | ook out!

Robi n, behi nd you!
Zap! Zooml Bang! Bami

$ sort sort.data

I Learning More About Sorting

I $ perldoc -f sort
$ man sort

Maxim 8.3

Take the time to become familiar with the
utilities included in the operating system

HERE Documents

Shot gun Sequenci ng

This is a relatively sinple nethod of readi ng
a genone sequence. It is '"'sinple'' because
It does away with the need to | ocate

I ndi vi dual DNA fragnents on a map before

t hey are sequenced.

The Shot gun Sequencing nethod relies on
power ful conputers to assenble the finished
seguence.

pri
pri
pri
pri
pri
pri
pri
pri
pri

nt
nt
nt
nt
nt
nt
nt
nt
nt

Without HERE Documents

" Shot gun Sequenci ng\ n\ n";

"This is a relatively sinple nethod of readi ng\n";
"a genone sequence. It is ''sinple'' because\n";
"It does away wth the need to | ocate\n";

"1 ndi vidual DNA fragnents on a nap before\n";
"they are sequenced.\n\n";

"The Shot gun Sequencing nethod relies on\n";
"powerful conputers to assenble the finished\n";
"sequence. \n";

With HERE Documents

ny $shot gun_nessage = <<ENDSHOTNMSG
Shot gun Sequenci ng

This is a relatively sinple nethod of reading
a genone sequence. It is "'sinple'' because
It does away with the need to | ocate

I ndi vi dual DNA fragnents on a nmap before

t hey are sequenced.

The Shot gun Sequencing nethod relies on
power ful conputers to assenble the finished
seguence.

ENDSHOTVBG

print $shot gun_nessage;

Even Better HERE Documents

print <<ENDSHOTMSG
Shot gun Sequenci ng

This is a relatively sinple nethod of reading
a genone sequence. It is "'sinple'' because
It does away with the need to | ocate

I ndi vi dual DNA fragnents on a nmap before

t hey are sequenced.

The Shot gun Sequencing nethod relies on
power ful conputers to assenble the finished
seguence.

ENDSHOTVBG

Where To From Here

