Perl Grabbag

Some useful bits'n'pieces that every Perl
programmer should know



Strictness

#! [usr/bin/perl -w

# bestrict - denonstrating the effect of strictness.
use strict;

$nessage = "This is the nessage.\n";

print $nessage;



Results from bstrict ...

d obal synbol "$nmessage" requires explicit package nane at bestrict line 7.
d obal synbol "$nmessage" requires explicit package nane at bestrict line 9.
Executi on of bestrict aborted due to conpilation errors.



I Using my To Fix bestrict

I my $nessage = "This is the nessage.\n";



Maxim 8.1

Unless you have a really good reason not to,
always switch on strictness at the top of your
program



Perl One-Liners

#! [usr/bin/perl -w

$ perl -e 'use Exanpl eModul €'

$ perl -e "print "Hello froma Perl

$ perl -e "printf "9%0. 2f\ n",

$ perldoc

$ perldoc

-f printf

-f sprintf

30000 *

one-liner.\n";'

.12



Perl One-Liners: Equivalents

$ perl -ne '"print if /ctgaatagcc/;' enbl.data

while (<> )
{

}

print if /ctgaatagcc/;

$ grep 'ctgaatagcc' enbl.data



Perl One-Liners: More Options

$ perl -npe 'last if /\d{4}$/;' enbl.data

while ( <>)
{
last if /\d{4}%/;
}
conti nue {
print $ ;
}

$ grep -v '[0123456789] [ 0123456789] [ 0123456789] [ 0123456789] $' enbl . dat a



Running Other Programs
From per|

#!' [usr/bin/perl -w

# pi nvoke - denonstrating the invocation of other prograns
# from Perl .

use strict;

ny $result = system( "ls -I p*" );

print "The result of the systemcall was as follows:\n$result\n";
$result = "Is -1 p*;

print "The result of the backticks call was as follows:\n$result\n";
$result = gx/Is -1 p*/;

print "The result of the qx// call was as follows:\n$result\n";



Results from pinvoke ...

“TW-TWT--
“TW-TWT--
“TW-TWT--
The result
0

The result
“TW-TWT--
“TW-TWT--
“TW-TWT--

The result
“TW-TWT--
“TW-TWT--
“TW-TWT--

1 barryp barryp 403 Aug 16 16: 48 pi nvoke

1 barryp barryp 145 Aug 7 12: 36 prepare_enbl

1 barryp barryp 422 Jul 22 15:10 private_scope
of the systemcall was as foll ows:

of the backticks call was as follows:

1 barryp barryp 403 Aug 16 16: 48 pi nvoke

1 barryp barryp 145 Aug 7 12: 36 prepare_enbl

1 barryp barryp 422 Jul 22 15:10 private_scope

of the gx// call was as foll ows:

1 barryp barryp 403 Aug 16 16: 48 pi nvoke

1 barryp barryp 145 Aug 7 12: 36 prepare_enbl

1 barryp barryp 422 Jul 22 15:10 private_scope



Recovering From Errors

my $first_filenanme = "itdoesnotexist.txt";

open FIRSTFILE, "$first _fil enane"
or die "Could not open $first filenanme. Aborting.\n";

eval {
ny $first_filename = "itdoesnotexist.txt";

open FIRSTFILE, "$first _fil enane”
or die "Could not open $first filenanme. Aborting.\n";

¥
if ( $@)
{

print "Calling eval produced this nessage: $@;
}



Maxim 8.2

Use eval to protect potentially erroneous code



Sorting

#!' [usr/bin/perl -w
# sortexanples - how Perl's in-built sort subroutine works.

use strict;

ny @equences = gW gctacataat attgttttta aattatattc cgatgcttgg );
print "Before sorting:\n\t-> @equences\n";

nmy @orted = sort @equences;
ny @eversed = sort { $b cnp $a } @equences;
nmy @l so reversed = reverse sort @equences;

print "Sorted order (default):\n\t-> @orted\n";
print "Reversed order (using sort { \$b cnp \$a }):\n\t-> @eversed\n";
print "Reversed order (using reverse sort):\n\t-> @l so_reversed\n";



Results from sortexamples ...

Bef ore sorti ng:

-> gctacataat attgttttta aattatattc cgatgcttgg
Sorted order (default):

-> aattatattc attgttttta cgatgcttgg gctacat aat
Reversed order (using sort { $b cnp $a }):

-> gctacataat cgatgcttgg attgttttta aattatattc
Reversed order (using reverse sort):

-> gctacataat cgatgcttgg attgttttta aattatattc



Another Sorting Example

ny @hronosones = gw 17 5 13 21 1 2 22 15 );
print "Before sorting:\n\t-> @hronpbsones\n";
@orted = sort { $a <=> $b } @hronpsones;

@eversed = sort { $b <=> $a } @hronosones;

print "Sorted order (using sort { \$a <=> \$b }):\n\t-> @orted\n";
print "Reversed order (using sort { \$b <=>\%a }):\n\t-> @eversed\n";



And Its results ...

Bef ore sorti ng:
-> 17513 21 1 2 22 15

Sorted order (using sort { $a <=> $b }):
->1 25 13 15 17 21 22

Reversed order (using sort { $b <=> %$a }):
-> 22 21 17 15 13 52 1



The sortfile Program

#! [usr/bin/perl -w

# sortfile - sort the lines in any file.
use strict,;

ny @he file;

while ( <>)

{
chonp;

push @he file, $_;
}

ny @orted file = sort @he file;

foreach ny $line ( @orted file )
{

}

print "$line\n";



Results from sortfile ...

Zap! Zooml Bang! Bani

Bat man, | ook out!

Robi n, behi nd you!
Aaaaah, it's the R ddl er!

$ perl sortfile sort.data
Aaaaah, 1t's the R ddl er!
Bat man, | ook out!

Robi n, behi nd you!
Zap! Zooml Bang! Bami

$ sort sort.data



I Learning More About Sorting

I $ perldoc -f sort
$ man sort



Maxim 8.3

Take the time to become familiar with the
utilities included in the operating system



HERE Documents

Shot gun Sequenci ng

This is a relatively sinple nethod of readi ng
a genone sequence. It is '"'sinple'' because
It does away with the need to | ocate

I ndi vi dual DNA fragnents on a map before

t hey are sequenced.

The Shot gun Sequencing nethod relies on
power ful conputers to assenble the finished
seguence.
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Without HERE Documents

" Shot gun Sequenci ng\ n\ n";

"This is a relatively sinple nethod of readi ng\n";
"a genone sequence. It is ''sinple'' because\n";
"It does away wth the need to | ocate\n";

"1 ndi vidual DNA fragnents on a nap before\n";
"they are sequenced.\n\n";

"The Shot gun Sequencing nethod relies on\n";
"powerful conputers to assenble the finished\n";
"sequence. \n";



With HERE Documents

ny $shot gun_nessage = <<ENDSHOTNMSG
Shot gun Sequenci ng

This is a relatively sinple nethod of reading
a genone sequence. It is "'sinple'' because
It does away with the need to | ocate

I ndi vi dual DNA fragnents on a nmap before

t hey are sequenced.

The Shot gun Sequencing nethod relies on
power ful conputers to assenble the finished
seguence.

ENDSHOTVBG

print $shot gun_nessage;



Even Better HERE Documents

print <<ENDSHOTMSG
Shot gun Sequenci ng

This is a relatively sinple nethod of reading
a genone sequence. It is "'sinple'' because
It does away with the need to | ocate

I ndi vi dual DNA fragnents on a nmap before

t hey are sequenced.

The Shot gun Sequencing nethod relies on
power ful conputers to assenble the finished
seguence.

ENDSHOTVBG



Where To From Here



