
Perl Grabbag

Some useful bits'n'pieces that every Perl
programmer should know

#! /usr/bin/perl -w

bestrict - demonstrating the effect of strictness.

use strict;

$message = "This is the message.\n";

print $message;

Strictness

Global symbol "$message" requires explicit package name at bestrict line 7.
Global symbol "$message" requires explicit package name at bestrict line 9.
Execution of bestrict aborted due to compilation errors.

Results from bstrict ...

my $message = "This is the message.\n";

Using my To Fix bestrict

Maxim 8.1

Unless you have a really good reason not to,
always switch on strictness at the top of your

program

#! /usr/bin/perl -w

$ perl -e 'use ExampleModule'

$ perl -e 'print "Hello from a Perl one-liner.\n";'

$ perl -e 'printf "%0.2f\n", 30000 * .12;'

$ perldoc -f printf

$ perldoc -f sprintf

Perl One-Liners

$ perl -ne 'print if /ctgaatagcc/;' embl.data

while (<>)
{
 print if /ctgaatagcc/;
}

$ grep 'ctgaatagcc' embl.data

Perl One-Liners: Equivalents

$ perl -npe 'last if /\d{4}$/;' embl.data

while (<>)
{
 last if /\d{4}$/;
}
continue {
 print $_;
}

$ grep -v '[0123456789][0123456789][0123456789][0123456789]$' embl.data

Perl One-Liners: More Options

#! /usr/bin/perl -w

pinvoke - demonstrating the invocation of other programs
from Perl.

use strict;

my $result = system("ls -l p*");

print "The result of the system call was as follows:\n$result\n";

$result = `ls -l p*`;

print "The result of the backticks call was as follows:\n$result\n";

$result = qx/ls -l p*/;

print "The result of the qx// call was as follows:\n$result\n";

Running Other Programs
From perl

-rw-rw-r-- 1 barryp barryp 403 Aug 16 16:48 pinvoke
-rw-rw-r-- 1 barryp barryp 145 Aug 7 12:36 prepare_embl
-rw-rw-r-- 1 barryp barryp 422 Jul 22 15:10 private_scope
The result of the system call was as follows:
0
The result of the backticks call was as follows:
-rw-rw-r-- 1 barryp barryp 403 Aug 16 16:48 pinvoke
-rw-rw-r-- 1 barryp barryp 145 Aug 7 12:36 prepare_embl
-rw-rw-r-- 1 barryp barryp 422 Jul 22 15:10 private_scope

The result of the qx// call was as follows:
-rw-rw-r-- 1 barryp barryp 403 Aug 16 16:48 pinvoke
-rw-rw-r-- 1 barryp barryp 145 Aug 7 12:36 prepare_embl
-rw-rw-r-- 1 barryp barryp 422 Jul 22 15:10 private_scope

Results from pinvoke ...

my $first_filename = "itdoesnotexist.txt";

open FIRSTFILE, "$first_filename"
 or die "Could not open $first_filename. Aborting.\n";

eval {
 my $first_filename = "itdoesnotexist.txt";

 open FIRSTFILE, "$first_filename"
 or die "Could not open $first_filename. Aborting.\n";
};
if ($@)
{
 print "Calling eval produced this message: $@";
}

Recovering From Errors

Maxim 8.2

Use eval to protect potentially erroneous code

#! /usr/bin/perl -w

sortexamples - how Perl's in-built sort subroutine works.

use strict;

my @sequences = qw(gctacataat attgttttta aattatattc cgatgcttgg);

print "Before sorting:\n\t-> @sequences\n";

my @sorted = sort @sequences;
my @reversed = sort { $b cmp $a } @sequences;
my @also_reversed = reverse sort @sequences;

print "Sorted order (default):\n\t-> @sorted\n";
print "Reversed order (using sort { \$b cmp \$a }):\n\t-> @reversed\n";
print "Reversed order (using reverse sort):\n\t-> @also_reversed\n";

Sorting

Before sorting:
 -> gctacataat attgttttta aattatattc cgatgcttgg
Sorted order (default):
 -> aattatattc attgttttta cgatgcttgg gctacataat
Reversed order (using sort { $b cmp $a }):
 -> gctacataat cgatgcttgg attgttttta aattatattc
Reversed order (using reverse sort):
 -> gctacataat cgatgcttgg attgttttta aattatattc

Results from sortexamples ...

my @chromosomes = qw(17 5 13 21 1 2 22 15);

print "Before sorting:\n\t-> @chromosomes\n";

@sorted = sort { $a <=> $b } @chromosomes;
@reversed = sort { $b <=> $a } @chromosomes;

print "Sorted order (using sort { \$a <=> \$b }):\n\t-> @sorted\n";
print "Reversed order (using sort { \$b <=> \$a }):\n\t-> @reversed\n";

Another Sorting Example

Before sorting:
 -> 17 5 13 21 1 2 22 15
Sorted order (using sort { $a <=> $b }):
 -> 1 2 5 13 15 17 21 22
Reversed order (using sort { $b <=> $a }):
 -> 22 21 17 15 13 5 2 1

And its results ...

#! /usr/bin/perl -w

sortfile - sort the lines in any file.

use strict;

my @the_file;

while (<>)
{
 chomp;
 push @the_file, $_;
}

my @sorted_file = sort @the_file;

foreach my $line (@sorted_file)
{
 print "$line\n";
}

The sortfile Program

Zap! Zoom! Bang! Bam!
Batman, look out!
Robin, behind you!
Aaaaah, it's the Riddler!

$ perl sortfile sort.data

Aaaaah, it's the Riddler!
Batman, look out!
Robin, behind you!
Zap! Zoom! Bang! Bam!

$ sort sort.data

Results from sortfile ...

$ perldoc -f sort

$ man sort

Learning More About Sorting

Maxim 8.3

Take the time to become familiar with the
utilities included in the operating system

Shotgun Sequencing

This is a relatively simple method of reading
a genome sequence. It is ''simple'' because
it does away with the need to locate
individual DNA fragments on a map before
they are sequenced.

The Shotgun Sequencing method relies on
powerful computers to assemble the finished
sequence.

HERE Documents

print "Shotgun Sequencing\n\n";
print "This is a relatively simple method of reading\n";
print "a genome sequence. It is ''simple'' because\n";
print "it does away with the need to locate\n";
print "individual DNA fragments on a map before\n";
print "they are sequenced.\n\n";
print "The Shotgun Sequencing method relies on\n";
print "powerful computers to assemble the finished\n";
print "sequence.\n";

Without HERE Documents

my $shotgun_message = <<ENDSHOTMSG;
Shotgun Sequencing

This is a relatively simple method of reading
a genome sequence. It is ''simple'' because
it does away with the need to locate
individual DNA fragments on a map before
they are sequenced.

The Shotgun Sequencing method relies on
powerful computers to assemble the finished
sequence.
ENDSHOTMSG

print $shotgun_message;

With HERE Documents

print <<ENDSHOTMSG;
Shotgun Sequencing

This is a relatively simple method of reading
a genome sequence. It is ''simple'' because
it does away with the need to locate
individual DNA fragments on a map before
they are sequenced.

The Shotgun Sequencing method relies on
powerful computers to assemble the finished
sequence.
ENDSHOTMSG

Even Better HERE Documents

Where To From Here

